File size: 5,913 Bytes
1173b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch.nn as nn
from torch.nn import (
    Linear,
    Conv2d,
    BatchNorm1d,
    BatchNorm2d,
    ReLU,
    Dropout,
    MaxPool2d,
    Sequential,
    Module,
)


# Support: ['ResNet_50', 'ResNet_101', 'ResNet_152']


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""

    return Conv2d(
        in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
    )


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""

    return Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class BasicBlock(Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = BatchNorm2d(planes)
        self.relu = ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = BatchNorm2d(planes)
        self.conv3 = conv1x1(planes, planes * self.expansion)
        self.bn3 = BatchNorm2d(planes * self.expansion)
        self.relu = ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(Module):
    def __init__(self, input_size, block, layers, zero_init_residual=True):
        super(ResNet, self).__init__()
        assert input_size[0] in [
            112,
            224,
        ], "input_size should be [112, 112] or [224, 224]"
        self.inplanes = 64
        self.conv1 = Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = ReLU(inplace=True)
        self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.bn_o1 = BatchNorm2d(2048)
        self.dropout = Dropout()
        if input_size[0] == 112:
            self.fc = Linear(2048 * 4 * 4, 512)
        else:
            self.fc = Linear(2048 * 8 * 8, 512)
        self.bn_o2 = BatchNorm1d(512)

        for m in self.modules():
            if isinstance(m, Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.bn_o1(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        x = self.bn_o2(x)

        return x


def ResNet_18(input_size, **kwargs):
    """Constructs a ResNet-50 model."""
    model = ResNet(input_size, Bottleneck, [2, 2, 2, 2], **kwargs)

    return model


def ResNet_50(input_size, **kwargs):
    """Constructs a ResNet-50 model."""
    model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs)

    return model


def ResNet_101(input_size, **kwargs):
    """Constructs a ResNet-101 model."""
    model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs)

    return model


def ResNet_152(input_size, **kwargs):
    """Constructs a ResNet-152 model."""
    model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs)

    return model