File size: 13,755 Bytes
50ed5c4 4ea00ca 50ed5c4 1188a5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_radio):
# 根据用户选择的参数构建文件路径
num_parts = num_parts_dropdown
token_counts_split = token_counts_radio
line_counts_split = line_counts_radio
cyclomatic_complexity_split = cyclomatic_complexity_radio
# 读取数据
dataframes = []
if token_counts_split=="Equal Frequency Partitioning":
token_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if line_counts_split=="Equal Frequency Partitioning":
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_split=="Equal Frequency Partitioning":
cyclomatic_complexity_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(cyclomatic_complexity_df)
#以下改为直接从一个划分文件中读取即可
# if problem_type_radio:
# problem_type_df = pd.read_csv(f"{num_parts}/problem_type_{problem_type_split}.csv")
# dataframes.append(problem_type_df)
# 如果所有三个radio都有value,将三个文件中的所有行拼接
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] # 去除重复的列
return combined_df
else:
return pd.DataFrame()
#用于更新数据文件的部分
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
# 使用subprocess执行Python文件
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
def generate_file(file_obj, user_string, user_number,dataset_choice):
tmpdir = 'tmpdir'
print('临时文件夹地址:{}'.format(tmpdir))
FilePath = file_obj.name
print('上传文件的地址:{}'.format(file_obj.name)) # 输出上传后的文件在gradio中保存的绝对地址
# 将文件复制到临时目录中
shutil.copy(file_obj.name, tmpdir)
# 获取上传Gradio的文件名称
FileName = os.path.basename(file_obj.name)
print(FilePath)
# 获取拷贝在临时目录的新的文件地址
# 打开复制到新路径后的文件
with open(FilePath, 'r', encoding="utf-8") as file_obj:
# 在本地电脑打开一个新的文件,并且将上传文件内容写入到新文件
outputPath = os.path.join('F:/Desktop/test', FileName)
data = json.load(file_obj)
print("data:", data)
# 将数据写入新的 JSON 文件
with open(outputPath, 'w', encoding="utf-8") as w:
json.dump(data, w, ensure_ascii=False, indent=4)
# 读取文件内容并上传到服务器
file_content = json.dumps(data) # 将数据转换为 JSON 字符串
url = "http://localhost:6222/submit" # 替换为你的后端服务器地址
files = {'file': (FileName, file_content, 'application/json')}
payload = {
'user_string': user_string,
'user_number': user_number,
'dataset_choice':dataset_choice
}
response = requests.post(url, files=files, data=payload)
print(response)
#返回服务器处理后的文件
if response.status_code == 200:
# 获取服务器返回的 JSON 数据
output_data = response.json()
# 保存 JSON 数据到本地
output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_1/evaluate_result', 'new-model.json')
with open(output_file_path, 'w', encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
print(f"File saved at: {output_file_path}")
# 调用更新数据文件的函数
directory_list = ['/path/to/directory1', '/path/to/directory2'] # 替换为你的目录路径列表
file_list = ['file1.py', 'file2.py', 'file3.py'] # 替换为你想要执行的Python文件列表
execute_specified_python_files(directory_list, file_list)
return {"status": "success", "message": "File received and saved"}
else:
return {"status": "error", "message": response.text}
# 返回服务器响应
return {"status": "success", "message": response.text}
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("Token Counts in Prompt")
if line_counts:
options.append("Line Counts in Prompt")
if cyclomatic_complexity:
options.append("Cyclomatic Complexity")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(radio,num):
# 读取本地的CSV文件
#token_counts_df = pd.read_csv(f"{num_parts}/QS/token_counts_QS.csv")
if radio=="Line Counts in Prompt":
radio_choice="line_counts"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Token Counts in Prompt":
radio_choice="token_counts"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Cyclomatic Complexity":
radio_choice="CC"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/cata_result.csv'
print("test!")
# file_path="E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/3/QS/CC_QS.csv"
df = pd.read_csv(file_path)
# 将第一列作为索引
df.set_index('Model', inplace=True)
# 转置数据框,使得模型作为列,横轴作为行
df_transposed = df.T
# 使用plotly绘制折线图
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
# 设置悬停效果
fig.update_traces(hovertemplate='%{y}')
return fig
# 创建 Gradio 界面
with gr.Blocks() as iface:
gr.HTML("""
<style>
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
<div class="title">📊 Demo-Leaderboard 📊</div>
""")
with gr.Tabs() as tabs:
with gr.TabItem("evaluation_result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 17px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Classification Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="Token Counts in Prompt ")
line_counts_checkbox = gr.Checkbox(label="Line Counts in Prompt ")
cyclomatic_complexity_checkbox = gr.Checkbox(label="Cyclomatic Complexity ")
problem_type_checkbox = gr.Checkbox(label="Problem Type ")
with gr.Column():
gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Number of Subsets")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Leaderboard"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[])
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
with gr.TabItem("upload"):
gr.Markdown("Upload a JSON file")
with gr.Row():
with gr.Column():
string_input = gr.Textbox(label="Enter the Model Name")
number_input = gr.Number(label="Select the Number of Samples")
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["humaneval", "mbpp"])
with gr.Column():
file_input = gr.File(label="Upload Generation Result in JSON file")
upload_button = gr.Button("Confirm and Upload")
json_output = gr.JSON(label="")
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
outputs=json_output)
# 定义事件处理函数
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2); /* 使用浅色边框,并带有透明度 */
padding: 10px; /* 添加内边距 */
border-radius: 8px; /* 更圆滑的圆角 */
background-color: #f9f9f9; /* 背景颜色 */
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); /* 添加阴影效果 */
}
}
"""
gr.HTML(f"<style>{css}</style>")
# 启动界面
iface.launch() |