File size: 51,667 Bytes
f7beec8
 
 
 
 
15dd4eb
f7beec8
 
 
 
 
 
1f74766
 
38cea8b
1f74766
 
 
38cea8b
 
c32157e
38cea8b
 
 
 
 
c32157e
38cea8b
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
38cea8b
 
c32157e
f7beec8
 
198405d
1f74766
 
 
f7beec8
 
 
 
 
c32157e
198405d
 
c32157e
198405d
 
 
f7beec8
 
 
 
 
c32157e
 
f7beec8
c32157e
f7beec8
 
198405d
6e35af2
198405d
 
 
f7beec8
 
 
 
1f74766
c32157e
f7beec8
c32157e
 
f7beec8
c32157e
 
 
 
 
 
f7beec8
 
 
 
 
 
 
c32157e
15dd4eb
c32157e
15dd4eb
 
 
c32157e
 
 
 
 
15dd4eb
 
c32157e
 
 
 
 
 
 
 
15dd4eb
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15dd4eb
f7beec8
 
 
 
 
 
c32157e
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
f7beec8
c32157e
f7beec8
 
 
 
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
 
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
f7beec8
 
 
38cea8b
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15dd4eb
c32157e
 
 
 
 
 
 
 
 
 
15dd4eb
38cea8b
c32157e
 
 
 
f7beec8
c32157e
 
f7beec8
c32157e
 
 
 
 
f7beec8
c32157e
 
 
 
f7beec8
c32157e
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
 
 
c32157e
 
f7beec8
 
c32157e
f7beec8
 
c32157e
198405d
c32157e
198405d
c32157e
f7beec8
 
c32157e
 
f7beec8
 
 
c32157e
 
 
f7beec8
 
 
c32157e
 
 
 
 
f7beec8
 
 
c32157e
 
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
f7beec8
c32157e
f7beec8
 
 
 
 
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
c32157e
f7beec8
 
198405d
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
f7beec8
c32157e
 
 
 
f7beec8
c32157e
 
 
 
f7beec8
c32157e
 
f7beec8
c32157e
 
 
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
c32157e
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
15dd4eb
c32157e
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
c32157e
 
 
 
 
 
f7beec8
 
c32157e
f7beec8
 
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
f7beec8
 
 
 
c32157e
f7beec8
 
c32157e
f7beec8
c32157e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7beec8
 
 
c32157e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
import argparse
import ast
import glob
import pickle
import traceback
import numpy as np

import pandas as pd
import gradio as gr
import numpy as np


promo_banner = """
<div style="background-color: #ffcc00; color: black; padding: 10px; text-align: center; font-weight: bold; font-size: 18px; border: 2px solid #000;">
    USE THE LATEST VERSIONS OF THE BEST CHATBOTS IN RUSSIAN FOR FREE
</div>
"""

deprecated_model_name = [
    "GigaChat 3.1.25.3",
    "GigaChat-Pro 2.2.25.3",
    "saiga_llama3_8b_v6",
    "saiga_phi3_medium",
    "GigaChat-Plus 3.1.25.3",
    "GigaChat-Pro 4.0.26.8",
    "GigaChat 4.0.26.8",
    "xAI: Grok 2",
    "GigaChat-Pro 4.0.26.15",
    "GigaChat 4.0.26.15",
    "YandexGPT Experimental", "yandex-gpt-arena",
    "RefalMachine/ruadapt_llama3_instruct_lep_saiga_kto_ablitirated"
]

models_10b = [
    "saiga_llama3_8b_v7",
    "Vikhrmodels/Vikhr-YandexGPT-5-Lite-8B-it",
    "T-lite-instruct-0.1",
    "t-tech/T-lite-it-1.0",
    "LLaMA-3 Chat (8B)",
    "Llama 3.1 8B Instruct Turbo",
    "MTSAIR/Cotype-Nano"
]


def make_default_md_1():
    leaderboard_md = f"""
# πŸ† LLM Arena in Russian: Leaderboard

{promo_banner}

"""
    return leaderboard_md

def make_default_md_2():
    leaderboard_md = f"""

    The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
    Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!

    - To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
    - If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
    - You can **contribute your vote** at [llmarena.ru](https://llmarena.ru/)!
    """
    return leaderboard_md


def make_arena_leaderboard_md(arena_df, last_updated_time):
    # Using version from monitor.py (translated)
    total_votes = sum(arena_df["num_battles"]) if not arena_df.empty else 0
    total_models = len(arena_df)
    space = "Β Β Β " # Using HTML space

    leaderboard_md = f"""
Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.

***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
See Figure 1 below for a visualization of the confidence intervals of model ratings.
"""
    return leaderboard_md


def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="site_visitors/medium_prompts:style control"):
    total_votes = sum(arena_df["num_battles"]) if not arena_df.empty else 0
    total_models = len(arena_df)
    space = "Β Β Β "
    total_subset_votes = sum(arena_subset_df["num_battles"]) if not arena_subset_df.empty else 0
    total_subset_models = len(arena_subset_df)

    perc_models = round(total_subset_models / total_models * 100) if total_models > 0 else 0
    perc_votes = round(total_subset_votes / total_votes * 100) if total_votes > 0 else 0

    leaderboard_md = f"""### {cat_name_to_explanation.get(name, name)}
#### {space} #models: **{total_subset_models} ({perc_models}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({perc_votes}%)**{space}
"""
    return leaderboard_md

def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def filter_deprecated_models_plots(fig, hidden_models=None, limit_to_top=25):
    """
    Filters Plotly plots to show only top N models and optionally removes specific models.

    Args:
        fig: The Plotly figure object.
        hidden_models (list, optional): A list of model names to remove. Defaults to None.
        limit_to_top (int, optional): Limit display to top N models (0 or None means no limit). Defaults to 25.

    Returns:
        Plotly figure: The filtered figure object or the original if filtering fails or is not applicable.
    """
    if fig is None:
        return None

    # Check if the figure has data
    if not hasattr(fig, 'data') or len(fig.data) == 0:
        return fig

    # Check if data has a type attribute
    if not hasattr(fig.data[0], 'type'):
        return fig

    # Check minimum number of models after initial hidden_models filtering
    models_to_check = []
    if hasattr(fig.data[0], 'x'):
      models_to_check = fig.data[0].x
    elif hasattr(fig.data[0], 'y'): # For some types like bar, X axis might be numeric
      models_to_check = fig.data[0].y

    if hidden_models is not None and models_to_check.any():
        available_models = [x for x in models_to_check if x not in hidden_models]
        # print(f"Available models before top N: {len(available_models)}") # Debug
        if len(available_models) <= 2:  # If less than 3 models remain before top_n
            # print(f"Warning: Too few models left after initial filtering ({len(available_models)}), returning original plot.")
            return fig # Return the original plot if too few models

    if limit_to_top is not None and limit_to_top <= 0:
        limit_to_top = None

    try:
        # Work on a deep copy to avoid modifying the original figure object
        fig_copy = pickle.loads(pickle.dumps(fig))
        data = fig_copy.data[0]

        if data.type == 'heatmap':
            # Apply hidden models filter
            mask_x = ~np.isin(data.x, hidden_models) if hidden_models is not None else np.ones_like(data.x, dtype=bool)
            mask_y = ~np.isin(data.y, hidden_models) if hidden_models is not None else np.ones_like(data.y, dtype=bool)

            # Get initially filtered X and Y arrays
            filtered_x = np.array(data.x)[mask_x]
            filtered_y = np.array(data.y)[mask_y]

            # Apply top N limit (assuming the order is already by rank/rating)
            if limit_to_top is not None and len(filtered_x) > limit_to_top:
                top_models = filtered_x[:limit_to_top]
                # Create new masks based on the top models relative to the *original* data axes
                mask_x = np.isin(data.x, top_models)
                mask_y = np.isin(data.y, top_models)
                # Get final filtered axes
                filtered_x = np.array(data.x)[mask_x]
                filtered_y = np.array(data.y)[mask_y]
            elif len(filtered_x) <= 2: # If <=2 models remain after filtering
                 return fig # Return original

            # Update the heatmap data
            data.x = filtered_x
            data.y = filtered_y
            # Important: Indexing 'z' must use masks derived from the *original* data order
            z_original = np.array(fig.data[0].z)
            data.z = z_original[np.ix_(mask_y, mask_x)]

        elif data.type == 'scatter':
            trace = data
            # Apply hidden models filter
            mask = ~np.isin(trace.x, hidden_models) if hidden_models is not None else np.ones_like(trace.x, dtype=bool)

            # Get initially filtered arrays
            current_x = np.array(trace.x)[mask]
            current_y = np.array(trace.y)[mask]
            current_text = np.array(trace.text)[mask] if hasattr(trace, 'text') and trace.text is not None else None
            # Handle error bars safely
            current_error_y_array = np.array(trace.error_y['array'])[mask] if 'error_y' in trace and 'array' in trace.error_y and trace.error_y['array'] is not None else None
            current_error_y_arrayminus = np.array(trace.error_y['arrayminus'])[mask] if 'error_y' in trace and 'arrayminus' in trace.error_y and trace.error_y['arrayminus'] is not None else None

            # Apply top N limit
            if limit_to_top is not None and len(current_x) > limit_to_top:
                # Sort by y-value (rating) descending to find the top N
                sort_indices = np.argsort(-current_y)[:limit_to_top]
                current_x = current_x[sort_indices]
                current_y = current_y[sort_indices]
                if current_text is not None:
                    current_text = current_text[sort_indices]
                if current_error_y_array is not None:
                    current_error_y_array = current_error_y_array[sort_indices]
                if current_error_y_arrayminus is not None:
                    current_error_y_arrayminus = current_error_y_arrayminus[sort_indices]
            elif len(current_x) <= 2: # If <=2 models remain after filtering
                return fig # Return original

            # Update the scatter trace data
            trace.x, trace.y = current_x, current_y
            if current_text is not None:
                trace.text = current_text
            # Update error bars if they exist
            if current_error_y_array is not None:
                # Ensure error_y exists before assigning
                if 'error_y' not in trace: trace.error_y = {}
                trace.error_y['array'] = current_error_y_array
            if current_error_y_arrayminus is not None:
                if 'error_y' not in trace: trace.error_y = {}
                trace.error_y['arrayminus'] = current_error_y_arrayminus

        elif data.type == 'bar':
            trace = data
            # Apply hidden models filter
            mask = ~np.isin(trace.x, hidden_models) if hidden_models is not None else np.ones_like(trace.x, dtype=bool)

            # Get initially filtered arrays
            current_x = np.array(trace.x)[mask]
            current_y = np.array(trace.y)[mask]

            # Apply top N limit
            if limit_to_top is not None and len(current_x) > limit_to_top:
                # Sort by y-value (rating) descending
                sort_indices = np.argsort(-current_y)[:limit_to_top]
                current_x = current_x[sort_indices]
                current_y = current_y[sort_indices]
            elif len(current_x) <= 2: # If <=2 models remain after filtering
                return fig # Return original

            # Update the bar trace data
            trace.x, trace.y = current_x, current_y

        return fig_copy

    except Exception as e:
        print(f"Error filtering plot: {e}")
        traceback.print_exc()
        return fig # Return original figure on error


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        item = {} # Create dictionary once per row
        for h, v in zip(heads, row):
            if h == "Arena Elo rating":
                if v != "-":
                    try:
                        v = int(ast.literal_eval(v))
                    except:
                        v = np.nan # Handle parsing errors
                else:
                    v = np.nan
            item[h] = v
        if add_hyperlink and "Model" in item and "Link" in item: # Check keys exist
            # Check for empty/missing link
            if item["Link"] and item["Link"] != "-":
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
            # Otherwise, keep the model name as is
        rows.append(item)
    return rows


def create_ranking_str(ranking, ranking_difference):
    # Convert rank to int before comparison
    try:
        # Ensure rank and difference are treated as numbers
        ranking_val = int(float(ranking)) # Handle potential float input
        ranking_difference_val = int(float(ranking_difference))
        if ranking_difference_val > 0:
            return f"{ranking_val} ↑"
        elif ranking_difference_val < 0:
            return f"{ranking_val} ↓"
        else:
            return f"{ranking_val}"
    except (ValueError, TypeError): # Handle cases where rank is not numeric
        return str(ranking)


def recompute_final_ranking(arena_df):
    ranking = {}
    if arena_df.empty:
        return []

    model_indices = arena_df.index
    # Ensure CI columns exist before trying to access them
    if "rating_q025" not in arena_df.columns or "rating_q975" not in arena_df.columns:
        print("Warning: Confidence interval columns ('rating_q025', 'rating_q975') not found in DataFrame. Cannot compute UB Rank.")
        # Return NaN or simple rank based on order
        return [np.nan] * len(model_indices) # Or range(1, len(model_indices) + 1)

    ratings_q025 = arena_df["rating_q025"].to_dict()
    ratings_q975 = arena_df["rating_q975"].to_dict()

    for model_a in model_indices:
        rank = 1
        rating_a_q975 = ratings_q975.get(model_a)
        # Skip if model A has no CI data
        if pd.isna(rating_a_q975):
             ranking[model_a] = np.nan # Or assign max rank + 1
             continue

        for model_b in model_indices:
            if model_a == model_b:
                continue

            rating_b_q025 = ratings_q025.get(model_b)
            # Skip comparison if model B has no CI data
            if pd.isna(rating_b_q025):
                 continue

            # Check if B is statistically better than A
            if rating_b_q025 > rating_a_q975:
                rank += 1
        ranking[model_a] = rank
    return list(ranking.values())


def get_arena_table(arena_df, model_table_df, arena_subset_df=None, hidden_models=None):
    """
    Generates the leaderboard table data.
    'use_cache' parameter removed.
    """
    # print(f'Calculating get_arena_table') # Debug

    # Create copies to avoid modifying original DataFrames
    arena_df_processed = arena_df.copy()
    if arena_subset_df is not None:
        arena_subset_df_processed = arena_subset_df.copy()
    else:
        arena_subset_df_processed = None

    # Sort by rating initially to have a stable order before ranking
    arena_df_processed = arena_df_processed.sort_values(by=["rating"], ascending=False)
    # Compute 'final_ranking' based on CIs if possible
    if "rating_q025" in arena_df_processed.columns and "rating_q975" in arena_df_processed.columns:
         arena_df_processed["final_ranking"] = recompute_final_ranking(arena_df_processed)
         arena_df_processed = arena_df_processed.sort_values(
             by=["final_ranking", "rating"], ascending=[True, False]
         )
    else:
         # Fallback to simple ordering if CI columns are missing
         arena_df_processed["final_ranking"] = range(1, len(arena_df_processed) + 1)

    if hidden_models:
        arena_df_processed = arena_df_processed[~arena_df_processed.index.isin(hidden_models)].copy()
        # Recompute ranks for the filtered view
        if "rating_q025" in arena_df_processed.columns and "rating_q975" in arena_df_processed.columns:
            arena_df_processed["final_ranking"] = recompute_final_ranking(arena_df_processed)
            # Re-sort based on new ranks
            arena_df_processed = arena_df_processed.sort_values(
                by=["final_ranking", "rating"], ascending=[True, False]
            )
        else:
             arena_df_processed["final_ranking"] = range(1, len(arena_df_processed) + 1)


    if arena_subset_df_processed is not None:
        # Filter subset by hidden_models first
        if hidden_models:
             arena_subset_df_processed = arena_subset_df_processed[~arena_subset_df_processed.index.isin(hidden_models)].copy()

        # Ensure models in the subset are also present in the (filtered) main view
        arena_subset_df_processed = arena_subset_df_processed[arena_subset_df_processed.index.isin(arena_df_processed.index)]

        # Proceed only if subset is not empty and has CI columns
        if not arena_subset_df_processed.empty and "rating_q025" in arena_subset_df_processed.columns and "rating_q975" in arena_subset_df_processed.columns:
            # Rank within the subset
            arena_subset_df_processed = arena_subset_df_processed.sort_values(by=["rating"], ascending=False)
            arena_subset_df_processed["final_ranking_subset"] = recompute_final_ranking(arena_subset_df_processed) # Rank within category

            # Filter the main processed DF to only include models from the subset
            # 'final_ranking' here represents the rank *among these models* in the baseline category view
            arena_df_for_join = arena_df_processed[arena_df_processed.index.isin(arena_subset_df_processed.index)][["final_ranking", "rating"]].copy()
            arena_df_for_join.rename(columns={"final_ranking": "final_ranking_baseline"}, inplace=True)


            # Join the subset ranks and baseline ranks
            arena_df_combined = arena_subset_df_processed[["final_ranking_subset", "rating"]].join(
                 arena_df_for_join["final_ranking_baseline"], how="inner"
            )

            # Calculate rank difference
            arena_df_combined["ranking_difference"] = arena_df_combined["final_ranking_baseline"] - arena_df_combined["final_ranking_subset"]

            # Sort by subset rank and rating
            arena_df_combined = arena_df_combined.sort_values(
                by=["final_ranking_subset", "rating"], ascending=[True, False]
            )

            # Format the rank string with delta for display
            arena_df_combined["display_ranking"] = arena_df_combined.apply(
                lambda x: create_ranking_str(x["final_ranking_subset"], x["ranking_difference"]),
                axis=1,
            )
            arena_df_processed = arena_df_processed.loc[arena_df_combined.index] # Reorder arena_df_processed

            columns_to_join = ["display_ranking", "ranking_difference", "final_ranking_subset"]
            columns_to_join = [col for col in columns_to_join if col in arena_df_combined.columns]
            arena_df_processed = arena_df_processed.join(arena_df_combined[columns_to_join], how="inner")


            # Now sorting should work as the column exists
            # Use the subset rank for final sorting if subset is active
            # Check if 'final_ranking_subset' was successfully joined before sorting
            if "final_ranking_subset" in arena_df_processed.columns:
                arena_df_processed.sort_values(by=["final_ranking_subset", "rating"], ascending=[True, False], inplace=True)
            else:
                # Fallback sort if join failed for some reason
                arena_df_processed.sort_values(by=["rating"], ascending=False, inplace=True)


        else:
            # If subset is empty or lacks CI, disable subset logic
            arena_subset_df_processed = None
            # Use the baseline ranking as the display ranking
            arena_df_processed["display_ranking"] = arena_df_processed["final_ranking"].astype(str)
            arena_df_processed.sort_values(by=["final_ranking", "rating"], ascending=[True, False], inplace=True)


    else:
        # If no subset is used, display ranking is just the final rank from the main DF
        arena_df_processed["display_ranking"] = arena_df_processed["final_ranking"].astype(str)
        # Ensure it's sorted correctly
        arena_df_processed.sort_values(by=["final_ranking", "rating"], ascending=[True, False], inplace=True)


    values = []
    # Iterate using the final sorted index of arena_df_processed
    for model_key in arena_df_processed.index:
        row_data = arena_df_processed.loc[model_key]
        # Find model metadata
        model_info = model_table_df[model_table_df["key"] == model_key]
        if model_info.empty:
            # print(f"Warning: Model key '{model_key}' not found in model_table_df. Skipping.")
            continue # Skip if no metadata

        row = []
        # Rank (Display)
        row.append(row_data.get("display_ranking", "")) # Use the calculated display rank

        # Delta (only if subset was processed successfully)
        if arena_subset_df_processed is not None:
            row.append(row_data.get("ranking_difference", 0))

        # Model Name (hyperlink applied during loading)
        row.append(model_info["Model"].values[0])

        # Arena Elo
        row.append(round(row_data["rating"]))

        # 95% CI
        # Check for NaN before calculation
        upper_rating = row_data.get("rating_q975")
        lower_rating = row_data.get("rating_q025")
        current_rating = row_data.get("rating")
        upper_diff = round(upper_rating - current_rating) if pd.notna(upper_rating) and pd.notna(current_rating) else '?'
        lower_diff = round(current_rating - lower_rating) if pd.notna(current_rating) and pd.notna(lower_rating) else '?'
        row.append(f"+{upper_diff}/-{lower_diff}")


        # Votes
        row.append(round(row_data["num_battles"]))

        # Organization
        row.append(model_info["Organization"].values[0])

        # License
        row.append(model_info["License"].values[0])

        # Knowledge Cutoff
        cutoff_date = model_info["Knowledge cutoff date"].values[0]
        row.append("Unknown" if cutoff_date == "-" else cutoff_date)

        values.append(row)

    return values


key_to_category_name = {
    # Mapping from internal key to display name (kept English for consistency)
    "full": "Overall", # Might not be used if filtered out later
    "crowdsourcing/simple_prompts": "crowdsourcing/simple_prompts",
    "site_visitors/medium_prompts": "site_visitors/medium_prompts",
    "site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style_control" # Use underscore for display consistency if needed
}
cat_name_to_explanation = {
    # Translated explanations for display
    "Overall": "All queries",
    "crowdsourcing/simple_prompts": "Queries collected via crowdsourcing. Mostly simple ones.",
    "site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
    "site_visitors/medium_prompts:style_control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
}
cat_name_to_baseline = {
    # Baseline category for comparison (if needed, seems unused now but kept)
    # "Hard Prompts (English)": "English",
}

actual_categories = [
    # Categories available in the dropdown (use the *keys* from key_to_category_name)
    # "Overall", # Removed
    # "crowdsourcing/simple_prompts", # Removed
    "site_visitors/medium_prompts",
    "site_visitors/medium_prompts:style control"
]
# Default selected category key
req_cat_key = "site_visitors/medium_prompts:style control"
selected_category_key = req_cat_key if req_cat_key in actual_categories else ("site_visitors/medium_prompts" if "site_visitors/medium_prompts" in actual_categories else (actual_categories[0] if actual_categories else None))
# Get the display name for the selected category
selected_category_display_name = key_to_category_name.get(selected_category_key, selected_category_key) # Fallback to key if not found


def read_elo_file(elo_results_file, leaderboard_table_file):
    # Version from monitor.py, but no lazy_load or caching
    print('Reading Elo file...')
    arena_dfs = {}
    category_elo_results = {}
    last_updated_time = "N/A" # Default value
    elo_results = {} # Default value
    model_table_df = pd.DataFrame() # Default value

    try:
        # Use context manager for file operations
        with open(elo_results_file, "rb") as fin:
            elo_results = pickle.load(fin)

            # Try to get last updated time from primary or fallback categories
            main_cat_key = "site_visitors/medium_prompts:style control"
            fallback_cat_key_1 = "site_visitors/medium_prompts"
            fallback_cat_key_2 = "full" # Another fallback

            if main_cat_key in elo_results and "last_updated_datetime" in elo_results[main_cat_key]:
                 last_updated_time = elo_results[main_cat_key]["last_updated_datetime"].split(" ")[0]
            elif fallback_cat_key_1 in elo_results and "last_updated_datetime" in elo_results[fallback_cat_key_1]:
                 last_updated_time = elo_results[fallback_cat_key_1]["last_updated_datetime"].split(" ")[0]
            elif fallback_cat_key_2 in elo_results and "last_updated_datetime" in elo_results[fallback_cat_key_2]:
                 last_updated_time = elo_results[fallback_cat_key_2]["last_updated_datetime"].split(" ")[0]

            # Iterate through defined category keys
            for key in key_to_category_name.keys():
                display_name = key_to_category_name[key] # Get the display name
                if key in elo_results:
                    # Check for required data within the category result
                    if "leaderboard_table_df" in elo_results[key] and isinstance(elo_results[key]["leaderboard_table_df"], pd.DataFrame):
                         df = elo_results[key]["leaderboard_table_df"]
                         # Filter by number of battles > 200
                         # Store using the *display_name* as the key for consistency with dropdown/UI
                         arena_dfs[display_name] = df[df["num_battles"] > 200].copy()
                         category_elo_results[display_name] = elo_results[key]
                    # else:
                    #      print(f"Warning: 'leaderboard_table_df' not found or not a DataFrame for key '{key}'")
                # else:
                #      print(f"Warning: Key '{key}' not found in elo_results")

        # Load model metadata CSV
        data = load_leaderboard_table_csv(leaderboard_table_file)
        model_table_df = pd.DataFrame(data)

    except FileNotFoundError:
        print(f"Error: Elo results file not found at {elo_results_file}")
        # Return empty structures
    except Exception as e:
        print(f"Error reading elo file: {e}")
        traceback.print_exc()
        # Return empty structures

    # Ensure correct data types are returned even on error
    return last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df


def build_leaderboard_tab(
    elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
    # Load data once during build time
    try:
        last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
    except Exception as e:
        print(f"Failed to load initial data: {e}")
        # Set empty defaults to prevent app crash
        last_updated_time = "Error"
        arena_dfs = {}
        category_elo_results = {}
        elo_results = {}
        model_table_df = pd.DataFrame()

    # Get data for the default selected category
    # Use the *display name* derived from the selected key
    if selected_category_display_name in arena_dfs:
        arena_df = arena_dfs[selected_category_display_name]
        elo_subset_results_init = category_elo_results[selected_category_display_name]
        p1_init = elo_subset_results_init.get("win_fraction_heatmap")
        p2_init = elo_subset_results_init.get("battle_count_heatmap")
        p3_init = elo_subset_results_init.get("bootstrap_elo_rating")
        p4_init = elo_subset_results_init.get("average_win_rate_bar")
    else:
        # Fallback if default category is missing
        fallback_cat_display_name = None
        if actual_categories:
             # Try the first actual category's display name
             first_cat_key = actual_categories[0]
             fallback_cat_display_name = key_to_category_name.get(first_cat_key, first_cat_key)

        if fallback_cat_display_name and fallback_cat_display_name in arena_dfs:
            print(f"Warning: Selected category '{selected_category_display_name}' not found. Falling back to '{fallback_cat_display_name}'.")
            arena_df = arena_dfs[fallback_cat_display_name]
            elo_subset_results_init = category_elo_results[fallback_cat_display_name]
            p1_init = elo_subset_results_init.get("win_fraction_heatmap")
            p2_init = elo_subset_results_init.get("battle_count_heatmap")
            p3_init = elo_subset_results_init.get("bootstrap_elo_rating")
            p4_init = elo_subset_results_init.get("average_win_rate_bar")
        else:
            print(f"Warning: Default category '{selected_category_display_name}' and fallback categories not found in data.")
            arena_df = pd.DataFrame() # Empty DataFrame
            p1_init, p2_init, p3_init, p4_init = None, None, None, None

    # Apply initial filtering to plots
    p1_init = filter_deprecated_models_plots(p1_init, hidden_models=deprecated_model_name)
    p2_init = filter_deprecated_models_plots(p2_init, hidden_models=deprecated_model_name)
    p3_init = filter_deprecated_models_plots(p3_init, hidden_models=deprecated_model_name)
    p4_init = filter_deprecated_models_plots(p4_init, hidden_models=deprecated_model_name)

    default_md = make_default_md_1() # Parameters removed
    default_md_2 = make_default_md_2() # Parameters removed

    with gr.Row():
        with gr.Column(scale=4):
            # Removed Vote button
            md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
        with gr.Column(scale=1):
            vote_button = gr.Button("Vote!", link="https://llmarena.ru")
    md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")

    # Generate initial table data
    if not arena_df.empty and not model_table_df.empty:
         # Pass the baseline DF and the model table; initially no subset difference is shown
         arena_table_vals_init = get_arena_table(arena_df, model_table_df, hidden_models=deprecated_model_name)
    else:
         arena_table_vals_init = []

    # Single "Arena" tab
    with gr.Tab("Arena", id=0): # Removed Tabs() as only one tab
        md_arena = make_arena_leaderboard_md(arena_df, last_updated_time)
        lb_description = gr.Markdown(md_arena, elem_id="leaderboard_markdown")

        with gr.Row():
            with gr.Column(scale=2):
                # Use *display names* for choices if they differ significantly from keys,
                # but here keys are descriptive enough. Callback receives the *key*.
                category_dropdown = gr.Dropdown(
                    # Choices should be the *keys* corresponding to display names
                    choices=actual_categories,
                    value=selected_category_key, # Use the key for the default value
                    label="Category", # Translated
                )

            with gr.Column(scale=2):
                category_checkbox = gr.CheckboxGroup(
                    # Use user-friendly translated labels
                    ["Show Deprecated", "Only <10B Models"], # Adjusted label for clarity
                    label="Apply Filter",
                    info="",
                    value=[], # Filters off by default
                )

            # Category details
            default_category_details = make_category_arena_leaderboard_md(
                arena_df, arena_df, name=selected_category_display_name # Pass arena_df twice for initial display
            ) if not arena_df.empty else "No data for category"

            with gr.Column(scale=4, variant="panel"):
                 category_deets = gr.Markdown(
                     default_category_details, elem_id="category_deets"
                 )

        # DataFrame for displaying the table
        # Initial view doesn't have 'Delta' column
        arena_vals = pd.DataFrame(
            arena_table_vals_init,
            columns=[
                "Rank* (UB)", "Model", "Arena Elo", "95% CI",
                "Votes", "Organization", "License", "Knowledge Cutoff"
            ]
        ) if arena_table_vals_init else pd.DataFrame(columns=[ # Handle empty initial data
                "Rank* (UB)", "Model", "Arena Elo", "95% CI",
                "Votes", "Organization", "License", "Knowledge Cutoff"
            ])

        # Sort by Elo for initial display
        if "Arena Elo" in arena_vals.columns:
            arena_vals = arena_vals.sort_values(by="Arena Elo", ascending=False)


        elo_display_df = gr.Dataframe(
            headers=[ # Translated headers
                "Rank* (UB)", "Model", "Arena Elo", "95% CI",
                "Votes", "Organization", "License", "Knowledge Cutoff"
            ],
            datatype=[
                "str", "markdown", "number", "str",
                "number", "str", "str", "str"
            ],
            value=arena_vals.style, # Apply Pandas styling if needed
            elem_id="arena_leaderboard_dataframe",
            height=700,
            column_widths=[70, 190, 100, 100, 90, 130, 150, 100], # Widths from monitor.py
            wrap=True,
        )

        gr.Markdown(elem_id="leaderboard_markdown") # Empty markdown for spacing

        plot_1, plot_2, plot_3, plot_4 = None, None, None, None # Initialize plot variables
        more_stats_md = None # Initialize markdown variable
        if show_plot:
            more_stats_md = gr.Markdown(
                f"""## More Statistics for Chatbot Arena""", # Translated
                elem_id="leaderboard_header_markdown",
            )
            with gr.Row(elem_id="leaderboard_bars"): # Use ID from monitor.py
                with gr.Column():
                    gr.Markdown( # Translated title
                        "#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
                        elem_id="plot-title",
                    )
                    plot_3 = gr.Plot(p3_init, show_label=False) # Use initial data
                with gr.Column():
                    gr.Markdown( # Translated title
                        "#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
                        elem_id="plot-title",
                    )
                    plot_4 = gr.Plot(p4_init, show_label=False) # Use initial data
            with gr.Row(elem_id="leaderboard_plots"): # Use ID from monitor.py
                with gr.Column():
                    gr.Markdown( # Translated title
                        "#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
                        elem_id="plot-title",
                    )
                    plot_1 = gr.Plot(
                        p1_init, show_label=False, elem_id="plot-container" # Use initial data
                    )
                with gr.Column():
                    gr.Markdown( # Translated title
                        "#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
                        elem_id="plot-title",
                    )
                    plot_2 = gr.Plot(p2_init, show_label=False) # Use initial data

    def update_leaderboard_df(arena_table_vals):
        # Add error handling for empty or incorrect data
        # Expects 9 columns when Delta is present
        if not arena_table_vals or not isinstance(arena_table_vals, list) or not arena_table_vals[0] or len(arena_table_vals[0]) != 9:
            print("Warning: Invalid data for styling in update_leaderboard_df. Returning empty DataFrame.")
            # Return an empty styled DataFrame to avoid Gradio errors
            empty_styled = pd.DataFrame(columns=[
                "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
                "Votes", "Organization", "License", "Knowledge Cutoff"
            ]).style
            return empty_styled

        try:
            elo_datarame = pd.DataFrame(
                arena_table_vals,
                columns=[
                    "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
                    "Votes", "Organization", "License", "Knowledge Cutoff"
                ],
            )

            def highlight_max(s):
                # Check rank string for arrows
                return [
                    "color: green; font-weight: bold" if "↑" in str(v) else
                    "color: red; font-weight: bold" if "↓" in str(v) else ""
                    for v in s
                ]

            def highlight_rank_max(s):
                # Check Delta value (ensure it's numeric)
                return [
                    "color: green; font-weight: bold" if isinstance(v, (int, float)) and v > 0 else
                    "color: red; font-weight: bold" if isinstance(v, (int, float)) and v < 0 else ""
                    for v in s
                ]
            # Apply styles
            styled_df = elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
                highlight_rank_max, subset=["Delta"]
            )
            return styled_df

        except Exception as e:
            print(f"Error applying styles in update_leaderboard_df: {e}")
            traceback.print_exc()
            # Return unstyled DataFrame on error
            return pd.DataFrame(arena_table_vals, columns=[
                "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
                "Votes", "Organization", "License", "Knowledge Cutoff"
            ]).style

    def update_leaderboard_and_plots(category_key, filters): # Receives category *key* from dropdown
        # No caching
        # Reload data on each call
        try:
             current_last_updated_time, current_arena_dfs, current_category_elo_results, _, current_model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
        except Exception as e:
             print(f"Error reloading data in callback: {e}")
             # Return empty updates to prevent UI crash
             empty_df_update = gr.Dataframe(value=pd.DataFrame().style) # Empty DataFrame
             empty_plot_update = gr.Plot(value=None) # Empty Plot
             empty_md_update = gr.Markdown(value="Error loading data.") # Error Markdown
             # Match the number of outputs expected by the .change() call
             num_plots = 4 if show_plot else 0
             return [empty_df_update] + [empty_plot_update] * num_plots + [empty_md_update, empty_md_update]


        # Use the display name corresponding to the selected key
        category_display_name = key_to_category_name.get(category_key, category_key)

        # Check if data exists for the selected category (using display name as key now)
        if not current_arena_dfs or category_display_name not in current_arena_dfs or category_display_name not in current_category_elo_results or current_model_table_df.empty:
             print(f"Warning: Data missing for category '{category_display_name}' (key: '{category_key}') after reload.")
             empty_df_update = gr.Dataframe(value=pd.DataFrame().style)
             empty_plot_update = gr.Plot(value=None)
             empty_md_update = gr.Markdown(value=f"No data available for category: {category_display_name}")
             num_plots = 4 if show_plot else 0
             # Match the number of outputs
             return [empty_df_update] + [empty_plot_update] * num_plots + [empty_md_update, empty_md_update]

        # Get the specific data slices using the display name
        arena_subset_df = current_arena_dfs[category_display_name]
        elo_subset_results = current_category_elo_results[category_display_name]

        # Use the hardcoded baseline key, get its display name
        baseline_key = "site_visitors/medium_prompts:style control"
        baseline_display_name = key_to_category_name.get(baseline_key, baseline_key)

        # Fallback if baseline is missing
        if baseline_display_name not in current_arena_dfs:
            print(f"Warning: Baseline category '{baseline_display_name}' not found. Using selected category '{category_display_name}' as baseline.")
            baseline_display_name = category_display_name # Fallback to the selected category itself

        arena_df_baseline = current_arena_dfs[baseline_display_name]


        hidden_models_list = None # Default: show all
        # Check filter labels (must match the translated CheckboxGroup choices)
        if "Show Deprecated" not in filters:
            hidden_models_list = deprecated_model_name.copy() # Hide deprecated

        if "Only <10B Models" in filters:
            # Get all models currently in the baseline view
            all_models_in_view = arena_df_baseline.index.tolist()
            # Find models *not* in the allowed list
            models_to_hide = [model for model in all_models_in_view if model not in models_10b]

            if hidden_models_list is None: # If deprecated are not hidden
                hidden_models_list = models_to_hide
            else: # If deprecated are already hidden, add the non-<10B ones
                # Use set to avoid duplicates
                hidden_models_list = list(set(hidden_models_list + models_to_hide))

        arena_table_values = get_arena_table(
            arena_df_baseline, # Use the determined baseline DataFrame
            current_model_table_df,
            # Pass subset only if it's different from the baseline
            arena_subset_df=(arena_subset_df if category_display_name != baseline_display_name else None),
            hidden_models=hidden_models_list
        )

        dataframe_update = None
        # Show Delta column only if category is not the baseline and data exists
        if category_display_name != baseline_display_name and arena_table_values:
            styled_arena_values = update_leaderboard_df(arena_table_values) # Apply styling with Delta
            # Check if styling was successful
            if isinstance(styled_arena_values, pd.io.formats.style.Styler) and not styled_arena_values.data.empty:
                dataframe_update = gr.Dataframe(
                    headers=[ # Headers including Delta
                        "Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
                        "Votes", "Organization", "License", "Knowledge Cutoff"
                    ],
                    datatype=[
                        "str", "number", "markdown", "number", "str",
                        "number", "str", "str", "str"
                    ],
                    value=styled_arena_values, # Pass the Styler object
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100], # Widths with Delta
                    wrap=True,
                )
            else: # Handle styling failure
                 dataframe_update = gr.Dataframe(value=pd.DataFrame().style) # Empty update

        else: # Baseline category or no data for Delta
             # Ensure data exists before creating DataFrame
             if arena_table_values:
                  # Create DataFrame without Delta column from the raw values
                  df_no_delta = pd.DataFrame(arena_table_values, columns=[
                      "Rank* (UB)", "Model", "Arena Elo", "95% CI",
                      "Votes", "Organization", "License", "Knowledge Cutoff"
                  ])
                  dataframe_update = gr.Dataframe(
                      headers=[ # Headers without Delta
                          "Rank* (UB)", "Model", "Arena Elo", "95% CI",
                          "Votes", "Organization", "License", "Knowledge Cutoff"
                      ],
                      datatype=[
                          "str", "markdown", "number", "str", "number",
                          "str", "str", "str"
                      ],
                      value=df_no_delta.style, # Apply basic Pandas styling
                      elem_id="arena_leaderboard_dataframe",
                      height=700,
                      column_widths=[70, 190, 100, 100, 90, 130, 150, 100], # Widths without Delta
                      wrap=True,
                  )
             else:
                  dataframe_update = gr.Dataframe(value=pd.DataFrame().style) # Empty update

        plot_updates = [gr.Plot(value=None)] * 4 # Default empty plot updates
        if show_plot:
             p1_updated = elo_subset_results.get("win_fraction_heatmap")
             p2_updated = elo_subset_results.get("battle_count_heatmap")
             p3_updated = elo_subset_results.get("bootstrap_elo_rating")
             p4_updated = elo_subset_results.get("average_win_rate_bar")

             # Filter plots
             p1_filtered = filter_deprecated_models_plots(p1_updated, hidden_models=hidden_models_list)
             p2_filtered = filter_deprecated_models_plots(p2_updated, hidden_models=hidden_models_list)
             p3_filtered = filter_deprecated_models_plots(p3_updated, hidden_models=hidden_models_list)
             p4_filtered = filter_deprecated_models_plots(p4_updated, hidden_models=hidden_models_list)
             plot_updates = [p1_filtered, p2_filtered, p3_filtered, p4_filtered]


        more_stats_md_updated_text = f"""## More Statistics for Chatbot Arena - {category_display_name} """ if show_plot else ""
        more_stats_md_update = gr.Markdown(value=more_stats_md_updated_text)

        # Use baseline DF for total counts, subset DF for category-specific counts
        category_details_md_updated_text = make_category_arena_leaderboard_md(
            arena_df_baseline, arena_subset_df, name=category_display_name # Pass display name
        )
        category_deets_update = gr.Markdown(value=category_details_md_updated_text)

        # Return updates in the correct order matching outputs list
        # Order: df, p1, p2, p3, p4, more_stats_md, category_deets
        return [dataframe_update] + plot_updates + [more_stats_md_update, category_deets_update]


    # Define output components (must exist in the UI build)
    outputs_list = [elo_display_df]
    if show_plot:
        # Add plot components if they exist
        outputs_list.extend([plot_1, plot_2, plot_3, plot_4])
        # Add markdown component if it exists
        if more_stats_md: outputs_list.append(more_stats_md)
        else: outputs_list.append(gr.Markdown(visible=False)) # Placeholder if MD wasn't created
    else:
        # Add placeholders if plots/MD are not shown
        outputs_list.extend([gr.Plot(visible=False)] * 4)
        outputs_list.append(gr.Markdown(visible=False))
    outputs_list.append(category_deets) # Always update category details

    # Attach change listeners
    category_dropdown.change(
        fn=update_leaderboard_and_plots,
        inputs=[category_dropdown, category_checkbox],
        outputs=outputs_list
    )
    category_checkbox.change(
        fn=update_leaderboard_and_plots, # Use the same function
        inputs=[category_dropdown, category_checkbox],
        outputs=outputs_list
    )


    return_components = [md_1, md_2, lb_description, category_deets, elo_display_df]
    if show_plot:
        # Add plots if they were created
        return_components.extend([plot_1, plot_2, plot_3, plot_4])
        # Add the extra stats markdown if it was created
        if more_stats_md: return_components.append(more_stats_md)


    return return_components


def build_demo(elo_results_file, leaderboard_table_file):
    # Assumes block_css is available or defined elsewhere
    try:
        from fastchat.serve.gradio_web_server import block_css
    except ImportError:
        print("Warning: fastchat.serve.gradio_web_server.block_css not found. Using fallback CSS.")
        # Define a minimal fallback CSS or copy the content here
        block_css = """
        /* Add minimal CSS rules here if needed */
        #arena_leaderboard_dataframe table { font-size: 105%; }
        #leaderboard_markdown .prose { font-size: 110% !important; }
        .app { max-width: 100% !important; padding: 20px !important; }
        a { color: #1976D2; text-decoration: none; }
        a:hover { color: #63A4FF; text-decoration: underline; }
        """

    text_size = gr.themes.sizes.text_lg
    # Assumes theme.json is present
    try:
       theme = gr.themes.Default.load("theme.json")
    except:
       print("Warning: theme.json not found. Using default Gradio theme.")
       theme = gr.themes.Default(text_size=text_size) # Fallback theme

    if hasattr(theme, 'text_size'): theme.text_size = text_size
    # Apply custom settings if theme object supports it
    if hasattr(theme, 'set'):
        theme.set(
            button_large_text_size="40px",
            button_small_text_size="40px",
            button_large_text_weight="1000",
            button_small_text_weight="1000",
            button_shadow="*shadow_drop_lg",
            button_shadow_hover="*shadow_drop_lg",
            checkbox_label_shadow="*shadow_drop_lg",
            button_shadow_active="*shadow_inset",
            button_secondary_background_fill="*primary_300",
            button_secondary_background_fill_dark="*primary_700",
            button_secondary_background_fill_hover="*primary_200",
            button_secondary_background_fill_hover_dark="*primary_500",
            button_secondary_text_color="*primary_800",
            button_secondary_text_color_dark="white",
        )

    with gr.Blocks(
        title="LLM Arena: Leaderboard", # Translated title
        theme=theme,
        css=block_css, # Use loaded or fallback CSS
    ) as demo:
        # Build only the leaderboard tab content
        # show_plot=True to display plots
        leader_components = build_leaderboard_tab(
            elo_results_file, leaderboard_table_file, show_plot=True, mirror=False
        )
    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False) # Default False for HF
    parser.add_argument("--host", default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    # Removed args specific to monitor.py
    args = parser.parse_args()
    try:
        elo_result_files = glob.glob("elo_results_*.pkl")
        if not elo_result_files:
             raise FileNotFoundError("No elo_results_*.pkl files found.")
        # More robust sorting extracting the number
        elo_result_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
        elo_result_file = elo_result_files[-1]
        print(f"Using Elo results file: {elo_result_file}")
    except Exception as e:
        print(f"Error finding Elo results file: {e}")
        print("Please ensure a file matching 'elo_results_NUMBER.pkl' exists.")
        exit(1) # Exit if file not found

    try:
        leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
        if not leaderboard_table_files:
             raise FileNotFoundError("No leaderboard_table_*.csv files found.")
        leaderboard_table_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
        leaderboard_table_file = leaderboard_table_files[-1]
        print(f"Using leaderboard table file: {leaderboard_table_file}")
    except Exception as e:
        print(f"Error finding leaderboard table file: {e}")
        print("Please ensure a file matching 'leaderboard_table_NUMBER.csv' exists.")
        exit(1) # Exit if file not found


    demo = build_demo(elo_result_file, leaderboard_table_file)
    # Launch with args
    demo.launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share,
        show_api=False
    )