File size: 9,846 Bytes
191a7c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS
import openai
from langchain.chains.summarize import load_summarize_chain
import os
import json
from pprint import pprint
import pinecone
import time
from langchain.chat_models import AzureChatOpenAI
from langchain.vectorstores import Pinecone
from langchain.chains import RetrievalQA, LLMChain
from langchain.memory import ConversationBufferWindowMemory
from typing import Optional
import pandas as pd
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from Utility_New import MasterLLM, intent_recognition, entity_recognition_main, describe, compare, RAG, sentiment
openai.api_type = "azure"
openai.api_base = "https://di-sandbox-gpt4.openai.azure.com/"
openai.api_version = "2023-07-01-preview"
openai.api_key = "69ec3919a7314784be9c4f7414286fba"
os.environ['OPENAI_API_KEY']=openai.api_key
os.environ['OPENAI_API_BASE'] = openai.api_base
os.environ['OPENAI_API_VERSION'] = openai.api_version
os.environ['OPENAI_API_TYPE'] = openai.api_type
# PINECONE_API_KEY = 'eb57d1d5-dc39-46c2-a270-e6489dd85df1'
PINECONE_API_KEY = '98bbd113-f65a-403b-b44f-507e60506d46'
# get API key from app.pinecone.io and environment from console
pinecone.init(
api_key=os.environ.get('PINECONE_API_KEY') or '98bbd113-f65a-403b-b44f-507e60506d46',
environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
)
# # pinecone.init(
# # api_key=os.environ.get('PINECONE_API_KEY') or '49e9d57f-ca7b-45d8-9fe5-b02db54b2dc7',
# # environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
# # )
# pinecone.init(
# api_key=os.environ.get('PINECONE_API_KEY') or 'eb57d1d5-dc39-46c2-a270-e6489dd85df1',
# environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
# )
index_name = 'rag-sbc'
embedding_model = OpenAIEmbeddings(openai_api_key = os.environ.get('OPENAI_API_KEY'),
deployment="text-embedding-ada-002",
model="text-embedding-ada-002",
openai_api_base=os.environ.get('OPENAI_API_BASE'),
openai_api_type=os.environ.get('OPENAI_API_TYPE'))
index = pinecone.Index(index_name)
vectorstore = Pinecone(index, embedding_model.embed_query, 'text')
llm = AzureChatOpenAI(deployment_name = "GPT4_32k", model_name = "gpt-4-32k", temperature=0)
llm_35 = AzureChatOpenAI(deployment_name = "GPT_35_16k", model_name = "gpt-35-turbo-16k", temperature=0)
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=5,
return_messages=True)
session_memory = {}
entities = {}
data_json = pd.read_csv('Combined_data_final_V2.csv')
data = pd.read_csv('Combined_data_SBC.csv')
data.drop(columns=['ID'],inplace=True)
result = {}
for main_key, group_df in data.groupby('License Name'):
group_dict = group_df.to_dict(orient='records')
result[main_key] = group_dict
json_result = json.dumps(result, indent=2)
json_result = json_result.replace("\\n","")
json_result = json_result.replace("\\u2002","")
json_result = json_result.replace("\n","")
json_result = json_result.replace("/","")
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)
LicenseName = data['License Name'].to_list()
License_Service = data.groupby('License Name')['Service Name'].apply(list).reset_index(name='Service Name')
def final_output(UserPrompt):
# print("Entering 'final_output() thanks!'")
final_json = {}
intent = intent_recognition(UserPrompt)
# if intent!='Compare':
# intent = "Others"
print('Intent')
print(intent)
print()
#intent = "Others"
oldPrompt = UserPrompt
if len(list(entities.keys())) == 0:
PrevEntity = []
else:
PrevEntity = entities[list(entities.keys())[-1]]
Prev_Entity = [i.strip() for i in PrevEntity]
Prev_Entity = list(set(Prev_Entity))
print('Prev_Entity')
print(Prev_Entity)
print()
UserPrompt, Prev_Entity = sentiment(UserPrompt, Prev_Entity)
print('New Prev Entity')
print(Prev_Entity)
print('UserPrompt')
print(UserPrompt)
print()
entity_main = entity_recognition_main(UserPrompt, LicenseName)
entity_main = list(set(entity_main))
print('Main Entity')
print(entity_main)
print()
entities[oldPrompt] = entity_main
for i in Prev_Entity:
entity_main.append(i)
entity = entity_main
entity = list(set(entity))
print('Full Entity')
print(entity)
print()
try:
json_data = json.loads(json_result)
filtered_data = {key: json_data[key] for key in entity}
filtered_json = json.dumps(filtered_data, indent=2)
final_json = json.loads(filtered_json)
except:
final_json = {}
c = 0
if intent in ['Transfer']:
print(intent)
print()
output = "I have shared our last conversation on your WhatsApp"
return output, intent
elif len(entity)>0:
for i in entity:
if i in LicenseName:
c+=1
if c > 0 and c == len(entity):
if intent in ['Describe'] and len(entity) > 0:
print('Describe')
prompt, prompt_template = describe(entity, final_json, UserPrompt)
if len(entity) <=3:
chain = LLMChain(llm=llm_35, prompt=prompt_template,memory = conversational_memory)
else:
chain = LLMChain(llm=llm, prompt=prompt_template,memory = conversational_memory)
output = chain({'context':prompt})['text']
print(output)
elif intent in ['Compare'] and len(entity) > 0:
print('Compare')
prompt,prompt_template = compare(entity, final_json, UserPrompt)
if len(entity) <=3:
chain = LLMChain(llm=llm_35, prompt=prompt_template,memory = conversational_memory)
else:
chain = LLMChain(llm=llm, prompt=prompt_template,memory = conversational_memory)
output = chain({'context':prompt})['text']
print(output)
else:
print("RAG1")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm_35,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print(output)
else:
print("RAG2")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm_35,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print(output)
else:
print("RAG1")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print("I am the output for 'final_output()': ",output)
session_memory[oldPrompt] = output
return output, intent
def final_output_formatted(UserPrompt):
# import pdb; pdb.set_trace()
value = UserPrompt
# print("I am the user input: ", value)
answer,_ = final_output(value)
final_prompt_inst = """Your job is to summarise the given answer. You need to make sure the core values and key points of the answer is retained. You need to judge when you can shorten the answer to few words and when to few lines based on the user question. You need to analyze the answer and strictly add filler words for better conversational experience, bullet points, interactive view for better user experience, new lines and other features
User Prompt for your reference: {UserPrompt}
Answer provided: {answer}
Based on the above instructions, provide the final summarized answer."""
prompt_template_final = PromptTemplate(template = final_prompt_inst,input_variables=['UserPrompt','answer'] )
chain = LLMChain(llm=llm_35, prompt=prompt_template_final)
final_text = chain({'UserPrompt':value,'answer':answer})['text']
# print("I am the final text: ",final_text)
return final_text
app = Flask(__name__)
CORS(app)
@app.route("/")
def get_bot():
return render_template('index.html')
@app.route('/get_bot_response', methods=['POST'])
def get_bot_response():
user_message = request.json['user_message']
print(f'Received user message: {user_message}')
bot_response = final_output_formatted(user_message)
print("hi there")
print(f'Generated bot response: {bot_response}')
return jsonify({'bot_response': bot_response})
if __name__ == '__main__':
app.run(debug=False, host="0.0.0.0", port=8080) |