File size: 9,169 Bytes
df66f6e
2a5f9fb
df66f6e
2a5f9fb
cbcf875
2a5f9fb
b5474e9
 
2a5f9fb
0109b82
2a5f9fb
 
 
 
b5474e9
 
 
 
 
2a5f9fb
b5474e9
2a5f9fb
60bf24a
b5474e9
60bf24a
eaeb3a6
b5474e9
 
2a5f9fb
 
 
b5474e9
12febe1
5413d9c
0109b82
 
2a5f9fb
 
 
3dfaf22
2a5f9fb
 
 
943f952
92a9668
 
 
 
b5474e9
61a2e0b
eaeb3a6
92a9668
 
12febe1
2a5f9fb
 
38ec743
 
2a5f9fb
4263de1
b5474e9
 
 
4263de1
0109b82
 
567d2b9
0109b82
2a5f9fb
c769424
 
2a5f9fb
b5474e9
8e4a7c9
 
 
 
 
2a5f9fb
 
 
 
f52cc8a
091b970
2a5f9fb
 
 
89e838c
091b970
002172c
2a5f9fb
5ceb136
 
 
 
 
5455e12
 
27fbd7a
 
d5a90a4
2a5f9fb
 
002172c
2a5f9fb
 
 
42efd4f
567d2b9
4263de1
 
0109b82
 
2a5f9fb
 
3dfaf22
 
86ec923
2a5f9fb
 
 
 
9d22eee
2a5f9fb
 
 
b1a1395
b246f21
2a5f9fb
86ec923
2a5f9fb
 
3dfaf22
8aa51bc
2a5f9fb
 
281e899
61a2e0b
6eb2778
9d22eee
3dfaf22
2a5f9fb
6783fa0
2a5f9fb
edcde2c
2a5f9fb
 
 
61bbba6
a60d160
0109b82
 
2a5f9fb
6d1c2ae
06441ec
 
 
29b13b8
ed97320
020b254
06441ec
2a5f9fb
29b13b8
8a9dbef
e9f5e93
3dfaf22
 
dd67828
 
 
 
 
 
258b169
2a5f9fb
258b169
70a5d78
 
 
b5474e9
70a5d78
2a5f9fb
 
b5474e9
3dfaf22
 
 
b5474e9
762689d
2a5f9fb
 
 
 
 
 
 
 
 
 
 
3dfaf22
2a5f9fb
 
3dfaf22
2a5f9fb
3dfaf22
 
2a5f9fb
 
 
 
 
 
 
3bf84ad
2a5f9fb
 
 
b5474e9
b1a1395
df66f6e
2a5f9fb
ef386ca
 
9d056e9
b5474e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import glob
import json
import os
from dataclasses import dataclass
from decimal import Decimal

import dateutil

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, Backend, ModelType, Tasks, Version, WeightType


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: str  # org_model_precision (uid)
    full_model: str  # org/model (path on hub)
    org: str
    model: str
    revision: str  # commit hash, "" if main
    results: dict
    # precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown  # Pretrained, fine tuned, ...
    precision: str = "Unknown"
    # model_type: str = "Unknown"
    weight_type: WeightType = WeightType.Original  # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = ""  # submission date of request file
    num_few_shots: str = "0"
    add_special_tokens: str = ""
    llm_jp_eval_version: str = ""
    backend: str = ""

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")
        metainfo = config.get("metainfo", {})
        model_config = config.get("model", {})

        # Get model type from metainfo
        # model_type_str = metainfo.get("model_type", "")
        # model_type = ModelType.from_str(model_type_str)
        # model_type = metainfo.get("model_type", "Unknown")

        # Get num_few_shots from metainfo
        num_few_shots = str(metainfo.get("num_few_shots", 0))

        # Precision
        # precision = Precision.from_str(config.get("dtype"))
        precision = model_config.get("dtype", "Unknown")

        # Add Special Tokens
        add_special_tokens = str(
            config.get("pipeline_kwargs", {"add_special_tokens": "Unknown"}).get("add_special_tokens")
        )

        version = Version.from_str(metainfo.get("version", "?")).value.name
        backend = Backend.from_str(model_config.get("_target_", "?").split(".")[0]).value.name
        revision = model_config.get("revision", "")

        # Get model and org
        # org_and_model = config.get("model_name", config.get("offline_inference").get("model_name", None))
        org_and_model = config.get("model_name", config.get("offline_inference", {}).get("model_name", "Unknown"))
        org_and_model = org_and_model.split("/", 1)

        # org_and_modelがリストの場合、"/"で結合
        if isinstance(org_and_model, list):
            full_model = "/".join(org_and_model)
        else:
            full_model = org_and_model

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            # result_key = f"{model}_{precision.value.name}"
            result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            # result_key = f"{org}_{model}_{precision.value.name}"
            result_key = f"{model}_{precision}_({num_few_shots}shots)_{add_special_tokens}"
        full_model = "/".join(org_and_model)

        if "scores" not in data:
            raise KeyError(f"'scores' key not found in JSON file: {json_filepath}")

        scores = data["scores"]
        results = {}
        for task in Tasks:
            task_value = task.value
            score = scores.get(task_value.metric)
            results[task_value.metric] = score

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=revision,
            num_few_shots=num_few_shots,
            add_special_tokens=add_special_tokens,
            llm_jp_eval_version=version,
            backend=backend,
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision)
        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            self.architecture = request.get("architecture", "?")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            # AutoEvalColumn.average.name: None,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.num_few_shots.name: self.num_few_shots,
            AutoEvalColumn.add_special_tokens.name: self.add_special_tokens,
            AutoEvalColumn.llm_jp_eval_version.name: self.llm_jp_eval_version,
            AutoEvalColumn.backend.name: self.backend,
        }

        # for task in Tasks:
        #     task_value = task.value
        #     data_dict[task_value.col_name] = self.results.get(task_value.benchmark, None)
        for task in Tasks:
            task_value = task.value
            value = self.results.get(task_value.metric)
            data_dict[task_value.col_name] = Decimal(value)

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict()  # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue
    # print(f"Processing file: {model_result_filepath}")
    # print(f"Eval result: {eval_result.to_dict()}")

    return results