File size: 14,772 Bytes
169dd3c a056e0b 7ee6d4e 29e2769 169dd3c a056e0b 7ee6d4e 29e2769 a056e0b 7ee6d4e 29e2769 a056e0b bfcc00c a056e0b bfcc00c a056e0b 29e2769 a056e0b bfcc00c a056e0b 29e2769 a056e0b bfcc00c 29e2769 bfcc00c 29e2769 bfcc00c 29e2769 bfcc00c a056e0b 7ee6d4e a056e0b bfcc00c 29e2769 a056e0b 29e2769 7ee6d4e a056e0b 29e2769 7ee6d4e a056e0b 29e2769 a056e0b bfcc00c a056e0b 7ee6d4e a056e0b 7ee6d4e a056e0b 29e2769 a056e0b bfcc00c a056e0b 29e2769 a056e0b 29e2769 a056e0b 29e2769 a056e0b bfcc00c a056e0b 7ee6d4e 29e2769 7ee6d4e 29e2769 7ee6d4e 29e2769 7ee6d4e 29e2769 7ee6d4e a056e0b 29e2769 7ee6d4e a056e0b 29e2769 a056e0b 29e2769 a056e0b 29e2769 a056e0b 29e2769 a056e0b 29e2769 a056e0b bfcc00c a056e0b bfcc00c a056e0b bfcc00c a056e0b bfcc00c a056e0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import streamlit as st
import pandas as pd
from PIL import Image
import base64
from io import BytesIO
import random
# Define constants
MAJOR_A_WIN = "A>>B"
MINOR_A_WIN = "A>B"
MINOR_B_WIN = "B>A"
MAJOR_B_WIN = "B>>A"
TIE = "A=B"
def is_consistent(rating, reverse_rating):
if rating in {MAJOR_A_WIN, MINOR_A_WIN} and reverse_rating in {
MAJOR_B_WIN,
MINOR_B_WIN,
}:
return True
if rating in {MAJOR_B_WIN, MINOR_B_WIN} and reverse_rating in {
MAJOR_A_WIN,
MINOR_A_WIN,
}:
return True
if reverse_rating in {MAJOR_A_WIN, MINOR_A_WIN} and rating in {
MAJOR_B_WIN,
MINOR_B_WIN,
}:
return True
if reverse_rating in {MAJOR_B_WIN, MINOR_B_WIN} and rating in {
MAJOR_A_WIN,
MINOR_A_WIN,
}:
return True
if reverse_rating in {TIE} and rating in {TIE}:
return True
if reverse_rating in {TIE} and rating not in {TIE}:
return False
if rating in {TIE} and reverse_rating not in {TIE}:
return False
return False
# Function to convert PIL image to base64
def pil_to_base64(img):
buffered = BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
# Function to convert PIL image to base64
def pil_svg_to_base64(img):
buffered = BytesIO()
img.save(buffered, format="SVG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
# Load your dataframes
df_test_set = pd.read_json("data/test_set.jsonl", lines=True)
df_responses = pd.read_json("data/responses.jsonl", lines=True)
df_response_judging = pd.read_json("data/response_judging.jsonl", lines=True)
df_leaderboard = (
pd.read_csv("data/leaderboard_6_11.csv").sort_values("Rank").reset_index(drop=True)
)
df_leaderboard = df_leaderboard.rename(
columns={"EI Score": "Council Arena EI Score (95% CI)"}
)
# Prepare the scenario selector options
df_test_set["scenario_option"] = (
df_test_set["emobench_id"].astype(str) + ": " + df_test_set["scenario"]
)
scenario_options = df_test_set["scenario_option"].tolist()
# Prepare the model selector options
model_options = df_responses["llm_responder"].unique().tolist()
# Prepare the judge selector options
judge_options = df_response_judging["llm_judge"].unique().tolist()
st.set_page_config(page_title="Language Model Council", page_icon="🧊", layout="wide")
# Create three columns
col1, col2, col3 = st.columns(3)
# Define CSS to make buttons take full space
full_width_button_css = """
<style>
div.stButton > button {
width: 100%;
}
</style>
"""
st.markdown(full_width_button_css, unsafe_allow_html=True)
# Create a button that triggers the JavaScript function
# if st.button(button_text):
# st.markdown('<script type="text/javascript">openUrl()</script>', unsafe_allow_html=True)
# Place a button in each column
with col1:
st.link_button(
"Data",
"https://huggingface.co/datasets/llm-council/emotional_application",
use_container_width=True,
)
with col2:
if st.button("Paper"):
st.write("Button 2 clicked")
with col3:
st.link_button(
"Github",
"https://github.com/llm-council/llm-council",
use_container_width=True,
)
# Custom CSS to center title and header
center_css = """
<style>
h1, h2, h6{
text-align: center;
}
</style>
"""
st.markdown(center_css, unsafe_allow_html=True)
# Centered icon.
# image = Image.open("img/lmc_icon.png")
# img_base64 = pil_to_base64(image)
# centered_image_html = f"""
# <div style="text-align: center;">
# <img src="data:image/png;base64,{img_base64}" width="50"/>
# </div>
# """
# st.markdown(centered_image_html, unsafe_allow_html=True)
# Title and subtitle.
st.title("Language Model Council")
st.markdown(
"###### Benchmarking Foundation Models on Highly Subjective Tasks by Consensus :classical_building:"
)
# Render hero image.
with open("img/hero.svg", "r") as file:
svg_content = file.read()
left_co, cent_co, last_co = st.columns([0.2, 0.6, 0.2])
with cent_co:
st.image(svg_content, use_column_width=True)
with cent_co.expander("Abstract"):
st.markdown(
"""The rapid advancement of Large Language Models (LLMs) necessitates robust
and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based
on how well their responses align with human preferences. However, many tasks
such as those related to emotional intelligence, creative writing, or persuasiveness,
are highly subjective and often lack majoritarian human agreement. Judges may
have irreconcilable disagreements about what constitutes a better response. To
address the challenge of ranking LLMs on highly subjective tasks, we propose
a novel benchmarking framework, the Language Model Council (LMC). The
LMC operates through a democratic process to: 1) formulate a test set through
equal participation, 2) administer the test among council members, and 3) evaluate
responses as a collective jury. We deploy a council of 20 newest LLMs on an
open-ended emotional intelligence task: responding to interpersonal dilemmas.
Our results show that the LMC produces rankings that are more separable, robust,
and less biased than those from any individual LLM judge, and is more consistent
with a human-established leaderboard compared to other benchmarks."""
)
st.markdown(
"This leaderboard comes from deploying a Council of 20 LLMs on an **open-ended emotional intelligence task: responding to interpersonal dilemmas**."
)
# Create horizontal tabs
tabs = st.tabs(["Leaderboard Results", "Data Samples", "About Us"])
# Define content for each tab
with tabs[0]:
st.dataframe(df_leaderboard)
# HTML and CSS to create a text box with specified color
def colored_text_box(text, background_color, text_color="black"):
html_code = f"""
<div style="
background-color: {background_color};
color: {text_color};
padding: 10px;
border-radius: 5px;
">
{text}
</div>
"""
return html_code
# Ensure to initialize session state variables if they do not exist
if "selected_scenario" not in st.session_state:
st.session_state.selected_scenario = None
if "selected_model" not in st.session_state:
st.session_state.selected_model = None
if "selected_judge" not in st.session_state:
st.session_state.selected_judge = None
# Define callback functions to update session state
def update_scenario():
st.session_state.selected_scenario = st.session_state.scenario_selector
def update_model():
st.session_state.selected_model = st.session_state.model_selector
def update_judge():
st.session_state.selected_judge = st.session_state.judge_selector
def randomize_selection():
st.session_state.selected_scenario = random.choice(scenario_options)
st.session_state.selected_model = random.choice(model_options)
st.session_state.selected_judge = random.choice(judge_options)
with tabs[1]:
# Add randomize button at the top of the app
_, mid_column, _ = st.columns([0.4, 0.2, 0.4])
mid_column.button(
":game_die: Randomize!", on_click=randomize_selection, type="primary"
)
st.markdown("### 1. Select a scenario.")
# Create the selectors
st.session_state.selected_scenario = st.selectbox(
"Select Scenario",
scenario_options,
label_visibility="hidden",
key="scenario_selector",
on_change=update_scenario,
index=(
scenario_options.index(st.session_state.selected_scenario)
if st.session_state.selected_scenario
else 0
),
)
# Get the selected scenario details
if st.session_state.selected_scenario:
selected_emobench_id = int(st.session_state.selected_scenario.split(": ")[0])
scenario_details = df_test_set[
df_test_set["emobench_id"] == selected_emobench_id
].iloc[0]
# Display the detailed dilemma and additional information
st.markdown(
colored_text_box(
scenario_details["detailed_dilemma"], "#eeeeeeff", "black"
),
unsafe_allow_html=True,
)
with st.expander("Additional Information"):
st.write(f"**LLM Author:** {scenario_details['llm_author']}")
st.write(f"**Problem:** {scenario_details['problem']}")
st.write(f"**Relationship:** {scenario_details['relationship']}")
st.write(f"**Scenario:** {scenario_details['scenario']}")
st.divider()
st.markdown("### 2. View responses.")
# Create two columns for model selectors
col1, col2 = st.columns(2)
with col1:
fixed_model = "qwen1.5-32B-Chat"
st.selectbox(
"Select Model", [fixed_model], key="fixed_model", label_visibility="hidden"
)
# Get the response string for the fixed model
if st.session_state.selected_scenario:
response_details_fixed = df_responses[
(df_responses["emobench_id"] == selected_emobench_id)
& (df_responses["llm_responder"] == fixed_model)
].iloc[0]
# Display the response string
st.markdown(
colored_text_box(
response_details_fixed["response_string"], "#eeeeeeff", "black"
),
unsafe_allow_html=True,
)
with col2:
st.session_state.selected_model = st.selectbox(
"Select Model",
model_options,
key="model_selector",
on_change=update_model,
index=(
model_options.index(st.session_state.selected_model)
if st.session_state.selected_model
else 0
),
)
# Get the response string for the selected model
if st.session_state.selected_model and st.session_state.selected_scenario:
response_details_dynamic = df_responses[
(df_responses["emobench_id"] == selected_emobench_id)
& (df_responses["llm_responder"] == st.session_state.selected_model)
].iloc[0]
# Display the response string
st.markdown(
colored_text_box(
response_details_dynamic["response_string"], "#eeeeeeff", "black"
),
unsafe_allow_html=True,
)
st.divider()
# Add bar charts for value counts of pairwise choices over all judges
st.markdown("### 3. Response judging")
st.markdown("#### All council members")
col1, col2 = st.columns(2)
with col1:
st.write(f"**{fixed_model}** vs **{st.session_state.selected_model}**")
pairwise_counts_left = df_response_judging[
(df_response_judging["first_completion_by"] == fixed_model)
& (
df_response_judging["second_completion_by"]
== st.session_state.selected_model
)
]["pairwise_choice"].value_counts()
st.bar_chart(pairwise_counts_left)
with col2:
st.write(f"**{st.session_state.selected_model}** vs **{fixed_model}**")
pairwise_counts_right = df_response_judging[
(
df_response_judging["first_completion_by"]
== st.session_state.selected_model
)
& (df_response_judging["second_completion_by"] == fixed_model)
]["pairwise_choice"].value_counts()
st.bar_chart(pairwise_counts_right)
# Create the llm_judge selector
st.markdown("#### Individual LLM judges")
st.session_state.selected_judge = st.selectbox(
"Select Judge",
judge_options,
label_visibility="hidden",
key="judge_selector",
on_change=update_judge,
index=(
judge_options.index(st.session_state.selected_judge)
if st.session_state.selected_judge
else 0
),
)
# Get the judging details for the selected judge and models
if st.session_state.selected_judge and st.session_state.selected_scenario:
col1, col2 = st.columns(2)
judging_details_left = df_response_judging[
(df_response_judging["llm_judge"] == st.session_state.selected_judge)
& (df_response_judging["first_completion_by"] == fixed_model)
& (
df_response_judging["second_completion_by"]
== st.session_state.selected_model
)
].iloc[0]
judging_details_right = df_response_judging[
(df_response_judging["llm_judge"] == st.session_state.selected_judge)
& (
df_response_judging["first_completion_by"]
== st.session_state.selected_model
)
& (df_response_judging["second_completion_by"] == fixed_model)
].iloc[0]
# Render consistency.
if is_consistent(
judging_details_left["pairwise_choice"],
judging_details_right["pairwise_choice"],
):
st.success("The judge ratings are consistent.", icon="✅")
else:
st.warning("The judge ratings are inconsistent.", icon="⚠️")
# Display the judging details
with col1:
if not judging_details_left.empty:
st.write(
f"**Pairwise Choice:** {judging_details_left['pairwise_choice']}"
)
st.markdown(
colored_text_box(
judging_details_left["judging_response_string"],
"#eeeeeeff",
"black",
),
unsafe_allow_html=True,
)
else:
st.write("No judging details found for the selected combination.")
with col2:
if not judging_details_right.empty:
st.write(
f"**Pairwise Choice:** {judging_details_right['pairwise_choice']}"
)
st.markdown(
colored_text_box(
judging_details_right["judging_response_string"],
"#eeeeeeff",
"black",
),
unsafe_allow_html=True,
)
else:
st.write("No judging details found for the selected combination.")
with tabs[2]:
st.write(
"""
Please reach out if you are interested in collaborating!
**Our Team:**
- Justin Zhao (justinxzhao@gmail.com)
- Flor Plaza (flor.plaza@unibocconi.it)
- Amanda Cercas Curry (amanda.cercas@unibocconi.it)
"""
)
|