Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,880 Bytes
9ab270d fdeb859 9ab270d 6c86f59 fdeb859 9ab270d a1c7119 9ab270d 917d263 9ab270d 43cf8d5 9ab270d 43cf8d5 9ab270d fdeb859 2b769f6 9ab270d 4d65fef 6c86f59 4d65fef 9ab270d c62829f 9ab270d f61fc21 a1c7119 016576a a1c7119 9ab270d a1c7119 9ab270d 6fb0c53 9ab270d 6c86f59 9ab270d a9cb4cf 9ab270d a9cb4cf 9ab270d 0bc71e0 9ab270d a9cb4cf 9ab270d 6399f3e 9ab270d eb75936 9ab270d 134d906 1aab7b2 68b62c1 579bce7 1aab7b2 9ab270d 9fff69f 9ab270d a9cb4cf 9ab270d 992e391 9ab270d fdeb859 9ab270d a9cb4cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import os
import spaces
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
HF_TOKEN = os.environ['hf_token'] if 'hf_token' in os.environ else None
import uuid
import time
import torch
import numpy as np
import gradio as gr
import tempfile
gradio_temp_dir = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_temp_dir, exist_ok=True)
from threading import Thread
# Phi3 Hijack
from transformers.models.phi3.modeling_phi3 import Phi3PreTrainedModel
Phi3PreTrainedModel._supports_sdpa = True
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from lib_omost.pipeline import StableDiffusionXLOmostPipeline
from chat_interface import ChatInterface
from transformers.generation.stopping_criteria import StoppingCriteriaList
import lib_omost.canvas as omost_canvas
# SDXL
sdxl_name = 'SG161222/RealVisXL_V4.0'
# sdxl_name = 'stabilityai/stable-diffusion-xl-base-1.0'
tokenizer = CLIPTokenizer.from_pretrained(
sdxl_name, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(
sdxl_name, subfolder="tokenizer_2")
text_encoder = CLIPTextModel.from_pretrained(
sdxl_name, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16", device_map="auto")
text_encoder_2 = CLIPTextModel.from_pretrained(
sdxl_name, subfolder="text_encoder_2", torch_dtype=torch.float16, variant="fp16", device_map="auto")
vae = AutoencoderKL.from_pretrained(
sdxl_name, subfolder="vae", torch_dtype=torch.bfloat16, variant="fp16", device_map="auto") # bfloat16 vae
unet = UNet2DConditionModel.from_pretrained(
sdxl_name, subfolder="unet", torch_dtype=torch.float16, variant="fp16", device_map="auto")
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
pipeline = StableDiffusionXLOmostPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=None, # We completely give up diffusers sampling system and use A1111's method
)
# LLM
# model_name = 'lllyasviel/omost-phi-3-mini-128k'
llm_name = 'lllyasviel/omost-llama-3-8b'
# model_name = 'lllyasviel/omost-dolphin-2.9-llama3-8b'
llm_model = AutoModelForCausalLM.from_pretrained(
llm_name,
torch_dtype="auto",
token=HF_TOKEN,
device_map="auto",
trust_remote_code=True,
)
llm_tokenizer = AutoTokenizer.from_pretrained(
llm_name,
token=HF_TOKEN
)
@torch.inference_mode()
def pytorch2numpy(imgs):
results = []
for x in imgs:
y = x.movedim(0, -1)
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
h = h.movedim(-1, 1)
return h
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@spaces.GPU(duration=120)
@torch.inference_mode()
def chat_fn(message: str, history: list, seed:int, temperature: float, top_p: float, max_new_tokens: int) -> str:
print('Chat begin:', message)
time_stamp = time.time()
np.random.seed(int(seed))
torch.manual_seed(int(seed))
conversation = [{"role": "system", "content": omost_canvas.system_prompt}]
for user, assistant in history:
if isinstance(user, str) and isinstance(assistant, str):
if len(user) > 0 and len(assistant) > 0:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = llm_tokenizer.apply_chat_template(
conversation, return_tensors="pt", add_generation_prompt=True).to(llm_model.device)
streamer = TextIteratorStreamer(llm_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
def interactive_stopping_criteria(*args, **kwargs) -> bool:
if getattr(streamer, 'user_interrupted', False):
print('User stopped generation:', message)
return True
else:
return False
stopping_criteria = StoppingCriteriaList([interactive_stopping_criteria])
def interrupter():
streamer.user_interrupted = True
return
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
stopping_criteria=stopping_criteria,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
Thread(target=llm_model.generate, kwargs=generate_kwargs).start()
outputs = []
for text in streamer:
outputs.append(text)
# print(outputs)
yield "".join(outputs), None
print(f'Chat end at {time.time() - time_stamp:.2f} seconds:', message)
return
@torch.inference_mode()
def post_chat(history):
canvas_outputs = None
try:
if history:
history = [(user, assistant) for user, assistant in history if isinstance(user, str) and isinstance(assistant, str)]
last_assistant = history[-1][1] if len(history) > 0 else None
canvas = omost_canvas.Canvas.from_bot_response(last_assistant)
canvas_outputs = canvas.process()
except Exception as e:
print('Last assistant response is not valid canvas:', e)
return canvas_outputs, gr.update(visible=canvas_outputs is not None), gr.update(interactive=len(history) > 0)
@spaces.GPU
@torch.inference_mode()
def diffusion_fn(chatbot, canvas_outputs, num_samples, seed, image_width, image_height,
highres_scale, steps, cfg, highres_steps, highres_denoise, negative_prompt):
use_initial_latent = False
eps = 0.05
image_width, image_height = int(image_width // 64) * 64, int(image_height // 64) * 64
rng = torch.Generator(unet.device).manual_seed(seed)
positive_cond, positive_pooler, negative_cond, negative_pooler = pipeline.all_conds_from_canvas(canvas_outputs, negative_prompt)
if use_initial_latent:
initial_latent = torch.from_numpy(canvas_outputs['initial_latent'])[None].movedim(-1, 1) / 127.5 - 1.0
initial_latent_blur = 40
initial_latent = torch.nn.functional.avg_pool2d(
torch.nn.functional.pad(initial_latent, (initial_latent_blur,) * 4, mode='reflect'),
kernel_size=(initial_latent_blur * 2 + 1,) * 2, stride=(1, 1))
initial_latent = torch.nn.functional.interpolate(initial_latent, (image_height, image_width))
initial_latent = initial_latent.to(dtype=vae.dtype, device=vae.device)
initial_latent = vae.encode(initial_latent).latent_dist.mode() * vae.config.scaling_factor
else:
initial_latent = torch.zeros(size=(num_samples, 4, image_height // 8, image_width // 8), dtype=torch.float32)
initial_latent = initial_latent.to(dtype=unet.dtype, device=unet.device)
latents = pipeline(
initial_latent=initial_latent,
strength=1.0,
num_inference_steps=int(steps),
batch_size=num_samples,
prompt_embeds=positive_cond,
negative_prompt_embeds=negative_cond,
pooled_prompt_embeds=positive_pooler,
negative_pooled_prompt_embeds=negative_pooler,
generator=rng,
guidance_scale=float(cfg),
).images
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
B, C, H, W = pixels.shape
pixels = pytorch2numpy(pixels)
if highres_scale > 1.0 + eps:
pixels = [
resize_without_crop(
image=p,
target_width=int(round(W * highres_scale / 64.0) * 64),
target_height=int(round(H * highres_scale / 64.0) * 64)
) for p in pixels
]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = pipeline(
initial_latent=latents,
strength=highres_denoise,
num_inference_steps=highres_steps,
batch_size=num_samples,
prompt_embeds=positive_cond,
negative_prompt_embeds=negative_cond,
pooled_prompt_embeds=positive_pooler,
negative_pooled_prompt_embeds=negative_pooler,
generator=rng,
guidance_scale=float(cfg),
).images
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
for i in range(len(pixels)):
unique_hex = uuid.uuid4().hex
image_path = os.path.join(gradio_temp_dir, f"{unique_hex}_{i}.png")
image = Image.fromarray(pixels[i])
image.save(image_path)
chatbot = chatbot + [(None, (image_path, 'image'))]
return chatbot
css = '''
code {white-space: pre-wrap !important;}
.gradio-container {max-width: none !important;}
.outer_parent {flex: 1;}
.inner_parent {flex: 1;}
footer {display: none !important; visibility: hidden !important;}
.translucent {display: none !important; visibility: hidden !important;}
'''
from gradio.themes.utils import colors
with gr.Blocks(
fill_height=True, css=css,
theme=gr.themes.Default(primary_hue=colors.blue, secondary_hue=colors.cyan, neutral_hue=colors.gray)
) as demo:
with gr.Row(elem_classes='outer_parent'):
with gr.Column(scale=25):
with gr.Row():
clear_btn = gr.Button("➕ New Chat", variant="secondary", size="sm", min_width=60)
retry_btn = gr.Button("Retry", variant="secondary", size="sm", min_width=60, visible=False)
undo_btn = gr.Button("✏️️ Edit Last Input", variant="secondary", size="sm", min_width=60, interactive=False)
seed = gr.Number(label="Random Seed", value=123456, precision=0)
with gr.Accordion(open=True, label='Language Model'):
with gr.Group():
with gr.Row():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.01,
value=0.6,
label="Temperature")
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.9,
label="Top P")
max_new_tokens = gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=4096,
label="Max New Tokens")
with gr.Accordion(open=True, label='Image Diffusion Model'):
with gr.Group():
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=2048, value=896, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=2048, value=1152, step=64)
with gr.Row():
num_samples = gr.Slider(label="Image Number", minimum=1, maximum=12, value=1, step=1)
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=100, value=25, step=1)
with gr.Accordion(open=False, label='Advanced'):
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=5.0, step=0.01)
highres_scale = gr.Slider(label="HR-fix Scale (\"1\" is disabled)", minimum=1.0, maximum=2.0, value=1.0, step=0.01)
highres_steps = gr.Slider(label="Highres Fix Steps", minimum=1, maximum=100, value=20, step=1)
highres_denoise = gr.Slider(label="Highres Fix Denoise", minimum=0.1, maximum=1.0, value=0.4, step=0.01)
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
render_button = gr.Button("Render the Image!", size='lg', variant="primary", visible=False)
examples = gr.Dataset(
samples=[
['generate an image of the fierce battle of warriors and the dragon'],
['change the dragon to a dinosaur']
],
components=[gr.Textbox(visible=False)],
label='Quick Prompts'
)
with gr.Row():
gr.Markdown("Omost: converting LLM's coding capability to image compositing capability.")
with gr.Row():
gr.Markdown("Local version (8GB VRAM): https://github.com/lllyasviel/Omost")
# with gr.Row():
# gr.Markdown("Hint: You can [duplicate this space](https://huggingface.co/spaces/lllyasviel/Omost?duplicate=true) to your private account to bypass the waiting queue.")
with gr.Column(scale=75, elem_classes='inner_parent'):
canvas_state = gr.State(None)
chatbot = gr.Chatbot(label='Omost', scale=1, show_copy_button=True, layout="panel", render=False)
chatInterface = ChatInterface(
fn=chat_fn,
post_fn=post_chat,
post_fn_kwargs=dict(inputs=[chatbot], outputs=[canvas_state, render_button, undo_btn]),
pre_fn=lambda: gr.update(visible=False),
pre_fn_kwargs=dict(outputs=[render_button]),
chatbot=chatbot,
retry_btn=retry_btn,
undo_btn=undo_btn,
clear_btn=clear_btn,
additional_inputs=[seed, temperature, top_p, max_new_tokens],
examples=examples,
show_stop_button=False
)
render_button.click(
fn=diffusion_fn, inputs=[
chatInterface.chatbot, canvas_state,
num_samples, seed, image_width, image_height, highres_scale,
steps, cfg, highres_steps, highres_denoise, n_prompt
], outputs=[chatInterface.chatbot]).then(
fn=lambda x: x, inputs=[
chatInterface.chatbot
], outputs=[chatInterface.chatbot_state])
if __name__ == "__main__":
demo.queue().launch()
|