A newer version of the Gradio SDK is available:
5.5.0
metadata
'[object Object]': null
{{ model_name | default("Diffusion Model") }}
Model description
This diffusion model is trained with the π€ Diffusers library
on the {{ dataset_name }}
dataset.
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training data
[TODO: describe the data used to train the model]
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: {{ learning_rate }}
- train_batch_size: {{ train_batch_size }}
- eval_batch_size: {{ eval_batch_size }}
- gradient_accumulation_steps: {{ gradient_accumulation_steps }}
- optimizer: AdamW with betas=({{ adam_beta1 }}, {{ adam_beta2 }}), weight_decay={{ adam_weight_decay }} and epsilon={{ adam_epsilon }}
- lr_scheduler: {{ lr_scheduler }}
- lr_warmup_steps: {{ lr_warmup_steps }}
- ema_inv_gamma: {{ ema_inv_gamma }}
- ema_inv_gamma: {{ ema_power }}
- ema_inv_gamma: {{ ema_max_decay }}
- mixed_precision: {{ mixed_precision }}
Training results
π [TensorBoard logs](https://huggingface.co/{{ repo_name }}/tensorboard?#scalars)