|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..utils import BaseOutput |
|
|
|
|
|
SCHEDULER_CONFIG_NAME = "scheduler_config.json" |
|
|
|
|
|
@dataclass |
|
class SchedulerOutput(BaseOutput): |
|
""" |
|
Base class for the scheduler's step function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_orig_sample: torch.FloatTensor = None |
|
|
|
|
|
class SchedulerMixin: |
|
""" |
|
Mixin containing common functions for the schedulers. |
|
""" |
|
|
|
config_name = SCHEDULER_CONFIG_NAME |
|
ignore_for_config = ["tensor_format"] |
|
|
|
def set_format(self, tensor_format="pt"): |
|
self.tensor_format = tensor_format |
|
if tensor_format == "pt": |
|
for key, value in vars(self).items(): |
|
if isinstance(value, np.ndarray): |
|
setattr(self, key, torch.from_numpy(value)) |
|
|
|
return self |
|
|
|
def clip(self, tensor, min_value=None, max_value=None): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
|
|
if tensor_format == "np": |
|
return np.clip(tensor, min_value, max_value) |
|
elif tensor_format == "pt": |
|
return torch.clamp(tensor, min_value, max_value) |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def log(self, tensor): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
|
|
if tensor_format == "np": |
|
return np.log(tensor) |
|
elif tensor_format == "pt": |
|
return torch.log(tensor) |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def match_shape(self, values: Union[np.ndarray, torch.Tensor], broadcast_array: Union[np.ndarray, torch.Tensor]): |
|
""" |
|
Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims. |
|
|
|
Args: |
|
values: an array or tensor of values to extract. |
|
broadcast_array: an array with a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
Returns: |
|
a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
|
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
values = values.flatten() |
|
|
|
while len(values.shape) < len(broadcast_array.shape): |
|
values = values[..., None] |
|
if tensor_format == "pt": |
|
values = values.to(broadcast_array.device) |
|
|
|
return values |
|
|
|
def norm(self, tensor): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
return np.linalg.norm(tensor) |
|
elif tensor_format == "pt": |
|
return torch.norm(tensor.reshape(tensor.shape[0], -1), dim=-1).mean() |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def randn_like(self, tensor, generator=None): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
return np.random.randn(*np.shape(tensor)) |
|
elif tensor_format == "pt": |
|
|
|
return torch.randn(tensor.shape, layout=tensor.layout, generator=generator).to(tensor.device) |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|
|
def zeros_like(self, tensor): |
|
tensor_format = getattr(self, "tensor_format", "pt") |
|
if tensor_format == "np": |
|
return np.zeros_like(tensor) |
|
elif tensor_format == "pt": |
|
return torch.zeros_like(tensor) |
|
|
|
raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") |
|
|