# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Union import numpy as np import torch from ..utils import BaseOutput SCHEDULER_CONFIG_NAME = "scheduler_config.json" @dataclass class SchedulerOutput(BaseOutput): """ Base class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor pred_orig_sample: torch.FloatTensor = None class SchedulerMixin: """ Mixin containing common functions for the schedulers. """ config_name = SCHEDULER_CONFIG_NAME ignore_for_config = ["tensor_format"] def set_format(self, tensor_format="pt"): self.tensor_format = tensor_format if tensor_format == "pt": for key, value in vars(self).items(): if isinstance(value, np.ndarray): setattr(self, key, torch.from_numpy(value)) return self def clip(self, tensor, min_value=None, max_value=None): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.clip(tensor, min_value, max_value) elif tensor_format == "pt": return torch.clamp(tensor, min_value, max_value) raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def log(self, tensor): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.log(tensor) elif tensor_format == "pt": return torch.log(tensor) raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def match_shape(self, values: Union[np.ndarray, torch.Tensor], broadcast_array: Union[np.ndarray, torch.Tensor]): """ Turns a 1-D array into an array or tensor with len(broadcast_array.shape) dims. Args: values: an array or tensor of values to extract. broadcast_array: an array with a larger shape of K dimensions with the batch dimension equal to the length of timesteps. Returns: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ tensor_format = getattr(self, "tensor_format", "pt") values = values.flatten() while len(values.shape) < len(broadcast_array.shape): values = values[..., None] if tensor_format == "pt": values = values.to(broadcast_array.device) return values def norm(self, tensor): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.linalg.norm(tensor) elif tensor_format == "pt": return torch.norm(tensor.reshape(tensor.shape[0], -1), dim=-1).mean() raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def randn_like(self, tensor, generator=None): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.random.randn(*np.shape(tensor)) elif tensor_format == "pt": # return torch.randn_like(tensor) return torch.randn(tensor.shape, layout=tensor.layout, generator=generator).to(tensor.device) raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def zeros_like(self, tensor): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.zeros_like(tensor) elif tensor_format == "pt": return torch.zeros_like(tensor) raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.")