lakshyana
updated diffusers
7c8c2c8
raw
history blame
2.38 kB
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_torch_available, is_transformers_available
from . import BaseDiffusersCLICommand
def info_command_factory(_):
return EnvironmentCommand()
class EnvironmentCommand(BaseDiffusersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
download_parser = parser.add_parser("env")
download_parser.set_defaults(func=info_command_factory)
def run(self):
hub_version = huggingface_hub.__version__
pt_version = "not installed"
pt_cuda_available = "NA"
if is_torch_available():
import torch
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
transformers_version = "not installed"
if is_transformers_available:
import transformers
transformers_version = transformers.__version__
info = {
"`diffusers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Huggingface_hub version": hub_version,
"Transformers version": transformers_version,
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
print(self.format_dict(info))
return info
@staticmethod
def format_dict(d):
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"