File size: 5,960 Bytes
5fc3f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf2488
 
5fc3f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from threading import Lock
import math
import os
import random

from diffusers import StableDiffusionPipeline
from diffusers.models.attention import get_global_heat_map, clear_heat_maps
from matplotlib import pyplot as plt
import gradio as gr
import torch
import torch.nn.functional as F
import spacy

if not os.environ.get('NO_DOWNLOAD_SPACY'):
    spacy.cli.download('en_core_web_sm')

model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda"

gen = torch.Generator(device='cuda')
gen.manual_seed(12758672)
orig_state = gen.get_state()
use_auth_token= "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"
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=use_auth_token).to(device)
lock = Lock()
nlp = spacy.load('en_core_web_sm')


def expand_m(m, n: int = 1, o=512, mode='bicubic'):
    m = m.unsqueeze(0).unsqueeze(0) / n
    m = F.interpolate(m.float().detach(), size=(o, o), mode='bicubic', align_corners=False)
    m = (m - m.min()) / (m.max() - m.min() + 1e-8)
    m = m.cpu().detach()

    return m


@torch.no_grad()
def predict(prompt, inf_steps, threshold):
    global lock
    with torch.cuda.amp.autocast(), lock:
        try:
            plt.close('all')
        except:
            pass

        gen.set_state(orig_state.clone())
        clear_heat_maps()

        out = pipe(prompt, guidance_scale=7.5, height=512, width=512, do_intermediates=False, generator=gen,
                   num_inference_steps=int(inf_steps))
        heat_maps = get_global_heat_map()

    with torch.cuda.amp.autocast(dtype=torch.float32):
        m = 0
        n = 0
        w = ''
        w_idx = 0

        fig, ax = plt.subplots()
        ax.imshow(out.images[0].cpu().float().detach().permute(1, 2, 0).numpy())
        ax.set_xticks([])
        ax.set_yticks([])

        fig1, axs1 = plt.subplots(math.ceil(len(out.words) / 4), 4)  # , figsize=(20, 20))
        fig2, axs2 = plt.subplots(math.ceil(len(out.words) / 4), 4)  # , figsize=(20, 20))

        for idx in range(len(out.words) + 1):
            if idx == 0:
                continue

            word = out.words[idx - 1]
            m += heat_maps[idx]
            n += 1
            w += word

            if '</w>' not in word:
                continue
            else:
                mplot = expand_m(m, n)
                spotlit_im = out.images[0].cpu().float().detach()
                w = w.replace('</w>', '')
                spotlit_im2 = torch.cat((spotlit_im, (1 - mplot.squeeze(0)).pow(1)), dim=0)

                if len(out.words) <= 4:
                    a1 = axs1[w_idx % 4]
                    a2 = axs2[w_idx % 4]
                else:
                    a1 = axs1[w_idx // 4, w_idx % 4]
                    a2 = axs2[w_idx // 4, w_idx % 4]

                a1.set_xticks([])
                a1.set_yticks([])
                a1.imshow(mplot.squeeze().numpy(), cmap='jet')
                a1.imshow(spotlit_im2.permute(1, 2, 0).numpy())
                a1.set_title(w)

                mask = torch.ones_like(mplot)
                mask[mplot < threshold * mplot.max()] = 0
                im2 = spotlit_im * mask.squeeze(0)
                a2.set_xticks([])
                a2.set_yticks([])
                a2.imshow(im2.permute(1, 2, 0).numpy())
                a2.set_title(w)
                m = 0
                n = 0
                w_idx += 1
                w = ''

        for idx in range(w_idx, len(axs1.flatten())):
            fig1.delaxes(axs1.flatten()[idx])
            fig2.delaxes(axs2.flatten()[idx])

    return fig, fig1, fig2


def set_prompt(prompt):
    return prompt


with gr.Blocks() as demo:
    md = '''# DAAM: Attention Maps for Interpreting Stable Diffusion
    Check out the paper: [What the DAAM: Interpreting Stable Diffusion Using Cross Attention](http://arxiv.org/abs/2210.04885). Note that, due to server costs, this demo will transition to HuggingFace Spaces on 2022-10-20.
    '''
    gr.Markdown(md)

    with gr.Row():
        with gr.Column():
            dropdown = gr.Dropdown([
                'A monkey wearing a halloween costume',
                'A smiling, red cat chewing gum',
                # 'Doing research at Comcast Applied AI labs',
                # 'Professor Jimmy Lin from the University of Waterloo',
                # 'Yann Lecun teaching machine learning on a chalkboard',
                # 'A cat eating cake for her birthday',
                # 'Steak and dollars on a plate',
                # 'A fox, a dog, and a wolf in a field'
            ], label='Examples', value='An angry, bald man doing research')

            text = gr.Textbox(label='Prompt', value='An angry, bald man doing research')
            slider1 = gr.Slider(15, 35, value=25, interactive=True, step=1, label='Inference steps')
            slider2 = gr.Slider(0, 1.0, value=0.4, interactive=True, step=0.05, label='Threshold (tau)')
            submit_btn = gr.Button('Submit')

        with gr.Tab('Original Image'):
            p0 = gr.Plot()

        with gr.Tab('Soft DAAM Maps'):
            p1 = gr.Plot()

        with gr.Tab('Hard DAAM Maps'):
            p2 = gr.Plot()

        submit_btn.click(fn=predict, inputs=[text, slider1, slider2], outputs=[p0, p1, p2])
        dropdown.change(set_prompt, dropdown, text)
        dropdown.update()

# ADDED PART
# import portpicker

# port = portpicker.pick_unused_port()
# select_ip = "0.0.0.0:"+str(port)
# print("Port: ", port)



# from IPython.display import Javascript


# def show_port(port, height=400):
#     display(Javascript("""
#   (async ()=>{
#     fm = document.createElement('iframe')
#     fm.src = await google.colab.kernel.proxyPort(%s)
#     fm.width = '95%%'
#     fm.height = '%d'
#     fm.frameBorder = 0
#     document.body.append(fm)
#   })();
#   """ % (port, height)))

# get_ipython().system_raw(f'python3 -m http.server {port} &')
# show_port(port)
### 



demo.launch(share=True)
# demo.launch(server_name='0.0.0.0', server_port=port)