File size: 28,278 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
import mmcv, torch
from tqdm import tqdm
from einops import rearrange
import os
import os.path as osp
import cv2
import gc
import math

from .anime_instances import AnimeInstances
import numpy as np
from typing import List, Tuple, Union, Optional, Callable
from mmengine import Config
from mmengine.model.utils import revert_sync_batchnorm
from mmdet.utils import register_all_modules, get_test_pipeline_cfg
from mmdet.apis import init_detector
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample, SampleList
from mmdet.structures.bbox.transforms import scale_boxes, get_box_wh
from mmdet.models.dense_heads.rtmdet_ins_head import RTMDetInsHead
from pycocotools.coco import COCO
from mmcv.transforms import Compose
from mmdet.models.detectors.single_stage import SingleStageDetector

from utils.logger import LOGGER
from utils.io_utils import square_pad_resize, find_all_imgs, imglist2grid, mask2rle, dict2json, scaledown_maxsize, resize_pad
from utils.constants import DEFAULT_DEVICE, CATEGORIES
from utils.booru_tagger import Tagger

from .models.animeseg_refine import AnimeSegmentation, load_refinenet, get_mask
from .models.rtmdet_inshead_custom import RTMDetInsSepBNHeadCustom

from torchvision.ops.boxes import box_iou
import torch.nn.functional as F


def prepare_refine_batch(segmentations: np.ndarray, img: np.ndarray, max_batch_size: int = 4, device: str = 'cpu', input_size: int = 720):

    img, (pt, pb, pl, pr) = resize_pad(img, input_size, pad_value=(0, 0, 0))

    img = img.transpose((2, 0, 1)).astype(np.float32) / 255.

    batch = []
    num_seg = len(segmentations)
    
    for ii, seg in enumerate(segmentations):
        seg, _ = resize_pad(seg, input_size, 0)
        seg = seg[None, ...]
        batch.append(np.concatenate((img, seg)))

        if ii == num_seg - 1:
            yield torch.from_numpy(np.array(batch)).to(device), (pt, pb, pl, pr)
        elif len(batch) >= max_batch_size:
            yield torch.from_numpy(np.array(batch)).to(device), (pt, pb, pl, pr)
            batch = []


VALID_REFINEMETHODS = {'animeseg', 'none'}

register_all_modules()


def single_image_preprocess(img: Union[str, np.ndarray], pipeline: Compose):
    if isinstance(img, str):
        img = mmcv.imread(img)
    elif not isinstance(img, np.ndarray):
        raise NotImplementedError

    # img = square_pad_resize(img, 1024)[0]

    data_ = dict(img=img, img_id=0)
    data_ = pipeline(data_)
    data_['inputs'] = [data_['inputs']]
    data_['data_samples'] = [data_['data_samples']]

    return data_, img

def animeseg_refine(det_pred: DetDataSample, img: np.ndarray, net: AnimeSegmentation, to_rgb=True, input_size: int = 1024):
    
    num_pred = len(det_pred.pred_instances)
    if num_pred < 1:
        return
    
    with torch.no_grad():
        if to_rgb:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        seg_thr = 0.5
        mask = get_mask(net, img, s=input_size)[..., 0]
        mask = (mask > seg_thr)
        
        ins_masks = det_pred.pred_instances.masks

        if isinstance(ins_masks, torch.Tensor):
            tensor_device = ins_masks.device
            tensor_dtype = ins_masks.dtype
            to_tensor = True
            ins_masks = ins_masks.cpu().numpy()

        area_original = np.sum(ins_masks, axis=(1, 2))
        masks_refined = np.bitwise_and(ins_masks, mask[None, ...])
        area_refined = np.sum(masks_refined, axis=(1, 2))

        for ii in range(num_pred):
            if area_refined[ii] / area_original[ii] > 0.3:
                ins_masks[ii] = masks_refined[ii]
        ins_masks = np.ascontiguousarray(ins_masks)

        # for ii, insm in enumerate(ins_masks):
        #     cv2.imwrite(f'{ii}.png', insm.astype(np.uint8) * 255)

        if to_tensor:
            ins_masks = torch.from_numpy(ins_masks).to(dtype=tensor_dtype).to(device=tensor_device)

        det_pred.pred_instances.masks = ins_masks
        # rst = np.concatenate((mask * img + 1 - mask, mask * 255), axis=2).astype(np.uint8)
        # cv2.imwrite('rst.png', rst)


# def refinenet_forward(det_pred: DetDataSample, img: np.ndarray, net: AnimeSegmentation, to_rgb=True, input_size: int = 1024):
    
#     num_pred = len(det_pred.pred_instances)
#     if num_pred < 1:
#         return
    
#     with torch.no_grad():
#         if to_rgb:
#             img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#         seg_thr = 0.5

#         h0, w0 = h, w = img.shape[0], img.shape[1]
#         if h > w:
#             h, w = input_size, int(input_size * w / h)
#         else:
#             h, w = int(input_size * h / w), input_size
#         ph, pw = input_size - h, input_size - w
#         tmpImg = np.zeros([s, s, 3], dtype=np.float32)
#         tmpImg[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h)) / 255
#         tmpImg = tmpImg.transpose((2, 0, 1))
#         tmpImg = torch.from_numpy(tmpImg).unsqueeze(0).type(torch.FloatTensor).to(model.device)
#         with torch.no_grad():
#             if use_amp:
#                 with amp.autocast():
#                     pred = model(tmpImg)
#                 pred = pred.to(dtype=torch.float32)
#             else:
#                 pred = model(tmpImg)
#             pred = pred[0, :, ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
#             pred = cv2.resize(pred.cpu().numpy().transpose((1, 2, 0)), (w0, h0))[:, :, np.newaxis]
#             return pred

#         mask = (mask > seg_thr)
        
#         ins_masks = det_pred.pred_instances.masks

#         if isinstance(ins_masks, torch.Tensor):
#             tensor_device = ins_masks.device
#             tensor_dtype = ins_masks.dtype
#             to_tensor = True
#             ins_masks = ins_masks.cpu().numpy()

#         area_original = np.sum(ins_masks, axis=(1, 2))
#         masks_refined = np.bitwise_and(ins_masks, mask[None, ...])
#         area_refined = np.sum(masks_refined, axis=(1, 2))

#         for ii in range(num_pred):
#             if area_refined[ii] / area_original[ii] > 0.3:
#                 ins_masks[ii] = masks_refined[ii]
#         ins_masks = np.ascontiguousarray(ins_masks)

#         # for ii, insm in enumerate(ins_masks):
#         #     cv2.imwrite(f'{ii}.png', insm.astype(np.uint8) * 255)

#         if to_tensor:
#             ins_masks = torch.from_numpy(ins_masks).to(dtype=tensor_dtype).to(device=tensor_device)

#         det_pred.pred_instances.masks = ins_masks


def read_imglst_from_txt(filep) -> List[str]:
    with open(filep, 'r', encoding='utf8') as f:
        lines = f.read().splitlines() 
    return lines


class AnimeInsSeg:

    def __init__(self, ckpt: str, default_det_size: int = 640, device: str = None, 
                 refine_kwargs: dict = {'refine_method': 'refinenet_isnet'},
                 tagger_path: str = 'models/wd-v1-4-swinv2-tagger-v2/model.onnx', mask_thr=0.3) -> None:
        self.ckpt = ckpt
        self.default_det_size = default_det_size
        self.device = DEFAULT_DEVICE if device is None else device

        # init detector in mmdet's way

        ckpt = torch.load(ckpt, map_location='cpu')
        cfg = Config.fromstring(ckpt['meta']['cfg'].replace('file_client_args', 'backend_args'), file_format='.py')
        cfg.visualizer = []
        cfg.vis_backends = {}
        cfg.default_hooks.pop('visualization')
        

        # self.model: SingleStageDetector = init_detector(cfg, checkpoint=None, device='cpu')
        model = MODELS.build(cfg.model)
        model = revert_sync_batchnorm(model)

        self.model = model.to(self.device).eval()
        self.model.load_state_dict(ckpt['state_dict'], strict=False)
        self.model = self.model.to(self.device).eval()
        self.cfg = cfg.copy()

        test_pipeline = get_test_pipeline_cfg(self.cfg.copy())
        test_pipeline[0].type = 'mmdet.LoadImageFromNDArray'
        test_pipeline = Compose(test_pipeline)
        self.default_data_pipeline = test_pipeline

        self.refinenet = None
        self.refinenet_animeseg: AnimeSegmentation = None
        self.postprocess_refine: Callable = None

        if refine_kwargs is not None:
            self.set_refine_method(**refine_kwargs)

        self.tagger = None
        self.tagger_path = tagger_path

        self.mask_thr = mask_thr

    def init_tagger(self, tagger_path: str = None):
        tagger_path = self.tagger_path if tagger_path is None else tagger_path
        self.tagger = Tagger(self.tagger_path)

    def infer_tags(self, instances: AnimeInstances, img: np.ndarray, infer_grey: bool = False):
        if self.tagger is None:
            self.init_tagger()

        if infer_grey:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[..., None][..., [0, 0, 0]]

        num_ins = len(instances)
        for ii in range(num_ins):
            bbox = instances.bboxes[ii]
            mask = instances.masks[ii]
            if isinstance(bbox, torch.Tensor):
                bbox = bbox.cpu().numpy()
                mask = mask.cpu().numpy()
            bbox = bbox.astype(np.int32)
            
            crop = img[bbox[1]: bbox[3] + bbox[1], bbox[0]: bbox[2] + bbox[0]].copy()
            mask = mask[bbox[1]: bbox[3] + bbox[1], bbox[0]: bbox[2] + bbox[0]]
            crop[mask == 0] = 255
            tags, character_tags = self.tagger.label_cv2_bgr(crop)
            exclude_tags = ['simple_background', 'white_background']
            valid_tags = []
            for tag in tags:
                if tag in exclude_tags:
                    continue
                valid_tags.append(tag)
            instances.tags[ii] = ' '.join(valid_tags)
            instances.character_tags[ii] = character_tags

    @torch.no_grad()
    def infer_embeddings(self, imgs, det_size = None):

        def hijack_bbox_mask_post_process(
                self,
                results,
                mask_feat,
                cfg,
                rescale: bool = False,
                with_nms: bool = True,
                img_meta: Optional[dict] = None):

            stride = self.prior_generator.strides[0][0]
            if rescale:
                assert img_meta.get('scale_factor') is not None
                scale_factor = [1 / s for s in img_meta['scale_factor']]
                results.bboxes = scale_boxes(results.bboxes, scale_factor)

            if hasattr(results, 'score_factors'):
                # TODO: Add sqrt operation in order to be consistent with
                #  the paper.
                score_factors = results.pop('score_factors')
                results.scores = results.scores * score_factors

            # filter small size bboxes
            if cfg.get('min_bbox_size', -1) >= 0:
                w, h = get_box_wh(results.bboxes)
                valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
                if not valid_mask.all():
                    results = results[valid_mask]

            # results.mask_feat = mask_feat
            return results, mask_feat

        def hijack_detector_predict(self: SingleStageDetector,
                    batch_inputs: torch.Tensor,
                    batch_data_samples: SampleList,
                    rescale: bool = True) -> SampleList:
            x = self.extract_feat(batch_inputs)

            bbox_head: RTMDetInsSepBNHeadCustom = self.bbox_head
            old_postprocess = RTMDetInsSepBNHeadCustom._bbox_mask_post_process
            RTMDetInsSepBNHeadCustom._bbox_mask_post_process = hijack_bbox_mask_post_process
            # results_list = bbox_head.predict(
            #     x, batch_data_samples, rescale=rescale)
            
            batch_img_metas = [
                data_samples.metainfo for data_samples in batch_data_samples
            ]

            outs = bbox_head(x)

            results_list = bbox_head.predict_by_feat(
                *outs, batch_img_metas=batch_img_metas, rescale=rescale)

            # batch_data_samples = self.add_pred_to_datasample(
            #     batch_data_samples, results_list)
            
            RTMDetInsSepBNHeadCustom._bbox_mask_post_process = old_postprocess
            return results_list

        old_predict = SingleStageDetector.predict
        SingleStageDetector.predict = hijack_detector_predict
        test_pipeline, imgs, _ = self.prepare_data_pipeline(imgs, det_size)

        if len(imgs) > 1:
            imgs = tqdm(imgs)
        model = self.model
        img = imgs[0]
        data_, img = test_pipeline(img)
        data = model.data_preprocessor(data_, False)
        instance_data, mask_feat = model(**data, mode='predict')[0]
        SingleStageDetector.predict = old_predict

        # print((instance_data.scores > 0.9).sum())
        return img, instance_data, mask_feat

    def segment_with_bboxes(self, img, bboxes: torch.Tensor, instance_data, mask_feat: torch.Tensor):
        # instance_data.bboxes: x1, y1, x2, y2
        maxidx = torch.argmax(instance_data.scores)
        bbox = instance_data.bboxes[maxidx].cpu().numpy()
        p1, p2 = (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3]))
        tgt_bboxes = instance_data.bboxes

        im_h, im_w = img.shape[:2]
        long_side = max(im_h, im_w)
        bbox_head: RTMDetInsSepBNHeadCustom = self.model.bbox_head
        priors, kernels = instance_data.priors, instance_data.kernels
        stride = bbox_head.prior_generator.strides[0][0]

        ins_bboxes, ins_segs, scores = [], [], []
        for bbox in bboxes:
            bbox = torch.from_numpy(np.array([bbox])).to(tgt_bboxes.dtype).to(tgt_bboxes.device)
            ioulst = box_iou(bbox, tgt_bboxes).squeeze()
            matched_idx = torch.argmax(ioulst)

            mask_logits = bbox_head._mask_predict_by_feat_single(
                mask_feat, kernels[matched_idx][None, ...], priors[matched_idx][None, ...])

            mask_logits = F.interpolate(
                mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear')

            mask_logits = F.interpolate(
                mask_logits,
                size=[long_side, long_side],
                mode='bilinear',
                align_corners=False)[..., :im_h, :im_w]
            mask = mask_logits.sigmoid().squeeze()
            mask = mask > 0.5
            mask = mask.cpu().numpy()
            ins_segs.append(mask)
            
            matched_iou_score = ioulst[matched_idx]
            matched_score = instance_data.scores[matched_idx]
            scores.append(matched_score.cpu().item())
            matched_bbox = tgt_bboxes[matched_idx]

            ins_bboxes.append(matched_bbox.cpu().numpy())
            # p1, p2 = (int(matched_bbox[0]), int(matched_bbox[1])), (int(matched_bbox[2]), int(matched_bbox[3]))

        if len(ins_bboxes) > 0:
            ins_bboxes = np.array(ins_bboxes).astype(np.int32)
            ins_bboxes[:, 2:] -= ins_bboxes[:, :2]
            ins_segs = np.array(ins_segs)
        instances = AnimeInstances(ins_segs, ins_bboxes, scores)
        
        self._postprocess_refine(instances, img)
        drawed = instances.draw_instances(img)
        # cv2.imshow('drawed', drawed)
        # cv2.waitKey(0)
        
        return instances

    def set_detect_size(self, det_size: Union[int, Tuple]):
        if isinstance(det_size, int):
            det_size = (det_size, det_size)
        self.default_data_pipeline.transforms[1].scale = det_size
        self.default_data_pipeline.transforms[2].size = det_size
        
    @torch.no_grad()
    def infer(self, imgs: Union[List, str, np.ndarray], 
              pred_score_thr: float = 0.3,
              refine_kwargs: dict = None,
              output_type: str="tensor", 
              det_size: int = None, 
              save_dir: str = '',
              save_visualization: bool = False,
              save_annotation: str = '',
              infer_tags: bool = False,
              obj_id_start: int = -1, 
              img_id_start: int = -1,
              verbose: bool = False,
              infer_grey: bool = False,
              save_mask_only: bool = False,
              val_dir=None,
              max_instances: int = 100,
              **kwargs) -> Union[List[AnimeInstances], AnimeInstances, None]:
    
        """
        Args:
            imgs (str, ndarray, Sequence[str/ndarray]):
                Either image files or loaded images.

        Returns:
            :obj:`AnimeInstances` or list[:obj:`AnimeInstances`]:
            If save_annotation or save_annotation, return None.
        """

        if det_size is not None:
            self.set_detect_size(det_size)
        if refine_kwargs is not None:
            self.set_refine_method(**refine_kwargs)

        self.set_max_instance(max_instances)

        if isinstance(imgs, str):
            if imgs.endswith('.txt'):
                imgs = read_imglst_from_txt(imgs)
        
        if save_annotation or save_visualization:
            return self._infer_save_annotations(imgs, pred_score_thr, det_size, save_dir, save_visualization, \
                                               save_annotation, infer_tags, obj_id_start, img_id_start, val_dir=val_dir)
        else:
            return self._infer_simple(imgs, pred_score_thr, det_size, output_type, infer_tags, verbose=verbose, infer_grey=infer_grey)
        
    def _det_forward(self, img, test_pipeline, pred_score_thr: float = 0.3) -> Tuple[AnimeInstances, np.ndarray]:
        data_, img = test_pipeline(img)
        with torch.no_grad():
            results: DetDataSample = self.model.test_step(data_)[0]
            pred_instances = results.pred_instances
            pred_instances = pred_instances[pred_instances.scores > pred_score_thr]
            if len(pred_instances) < 1:
                return AnimeInstances(), img
        
        del data_
        
        bboxes = pred_instances.bboxes.to(torch.int32)
        bboxes[:, 2:] -= bboxes[:, :2]
        masks = pred_instances.masks
        scores = pred_instances.scores
        return AnimeInstances(masks, bboxes, scores), img
        
    def _infer_simple(self, imgs: Union[List, str, np.ndarray], 
                      pred_score_thr: float = 0.3,
                      det_size: int = None,
                      output_type: str = "tensor",
                      infer_tags: bool = False,
                      infer_grey: bool = False,
                      verbose: bool = False) -> Union[DetDataSample, List[DetDataSample]]:
        
        if isinstance(imgs, List):
            return_list = True
        else:
            return_list = False

        assert output_type in {'tensor', 'numpy'}

        test_pipeline, imgs, _ = self.prepare_data_pipeline(imgs, det_size)
        predictions = []

        if len(imgs) > 1:
            imgs = tqdm(imgs)

        for img in imgs:
            instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
            # drawed = instances.draw_instances(img)
            # cv2.imwrite('drawed.jpg', drawed)
            self.postprocess_results(instances, img)
            # drawed = instances.draw_instances(img)
            # cv2.imwrite('drawed_post.jpg', drawed)

            if infer_tags:
                self.infer_tags(instances, img, infer_grey)
                
            if output_type == 'numpy':
                instances.to_numpy()
                
            predictions.append(instances)

        if return_list:
            return predictions
        else:
            return predictions[0]

    def _infer_save_annotations(self, imgs: Union[List, str, np.ndarray], 
              pred_score_thr: float = 0.3,
              det_size: int = None, 
              save_dir: str = '',
              save_visualization: bool = False,
              save_annotation: str = '',
              infer_tags: bool = False,
              obj_id_start: int = 100000000000, 
              img_id_start: int = 100000000000,
              save_mask_only: bool = False,
              val_dir = None,
              **kwargs) -> None:

        coco_api = None
        if isinstance(imgs, str) and imgs.endswith('.json'):
            coco_api = COCO(imgs)

            if val_dir is None:
                val_dir = osp.join(osp.dirname(osp.dirname(imgs)), 'val')
            imgs = coco_api.getImgIds()
            imgp2ids = {}
            imgps, coco_imgmetas = [], []
            for imgid in imgs:
                imeta = coco_api.loadImgs(imgid)[0]
                imgname = imeta['file_name']
                imgp = osp.join(val_dir, imgname)
                imgp2ids[imgp] = imgid
                imgps.append(imgp)
                coco_imgmetas.append(imeta)
            imgs = imgps

        test_pipeline, imgs, target_dir = self.prepare_data_pipeline(imgs, det_size)
        if save_dir == '':
            save_dir = osp.join(target_dir, \
                osp.basename(self.ckpt).replace('.ckpt', '').replace('.pth', '').replace('.pt', ''))
            
        if not osp.exists(save_dir):
            os.makedirs(save_dir)

        det_annotations = []
        image_meta = []
        obj_id = obj_id_start + 1
        image_id = img_id_start + 1

        for ii, img in enumerate(tqdm(imgs)):
            # prepare data
            if isinstance(img, str):
                img_name = osp.basename(img)
            else:
                img_name = f'{ii}'.zfill(12) + '.jpg'

            if coco_api is not None:
                image_id = imgp2ids[img]
            
            try:
                instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
            except Exception as e:
                raise e
                if isinstance(e, torch.cuda.OutOfMemoryError):
                    gc.collect()
                    torch.cuda.empty_cache()
                    torch.cuda.ipc_collect()
                    try:
                        instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
                    except:
                        LOGGER.warning(f'cuda out of memory: {img_name}')
                        if isinstance(img, str):
                            img = cv2.imread(img)
                        instances = None

            if instances is not None:
                self.postprocess_results(instances, img)

                if infer_tags:
                    self.infer_tags(instances, img)

                if save_visualization:
                    out_file = osp.join(save_dir, img_name)
                    self.save_visualization(out_file, img, instances)

            if save_annotation:
                im_h, im_w = img.shape[:2]
                image_meta.append({
                    "id": image_id,"height": im_h,"width": im_w, 
                    "file_name": img_name, "id": image_id
                })
                if instances is not None:
                    for ii in range(len(instances)):
                        segmentation = instances.masks[ii].squeeze().cpu().numpy().astype(np.uint8)
                        area = segmentation.sum()
                        segmentation *= 255
                        if save_mask_only:
                            cv2.imwrite(osp.join(save_dir, 'mask_' + str(ii).zfill(3) + '_' +img_name+'.png'), segmentation)
                        else:
                            score = instances.scores[ii]
                            if isinstance(score, torch.Tensor):
                                score = score.item()
                            score = float(score)
                            bbox = instances.bboxes[ii].cpu().numpy()
                            bbox = bbox.astype(np.float32).tolist()
                            segmentation = mask2rle(segmentation)
                            tag_string = instances.tags[ii]
                            tag_string_character = instances.character_tags[ii]
                            det_annotations.append({'id': obj_id, 'category_id': 0, 'iscrowd': 0, 'score': score,
                                'segmentation': segmentation, 'image_id': image_id, 'area': area,
                                'tag_string': tag_string, 'tag_string_character': tag_string_character, 'bbox': bbox
                            })
                        obj_id += 1
                image_id += 1

        if save_annotation != '' and not save_mask_only:
            det_meta = {"info": {},"licenses": [], "images": image_meta, 
                        "annotations": det_annotations, "categories": CATEGORIES}
            detp = save_annotation
            dict2json(det_meta, detp)
            LOGGER.info(f'annotations saved to {detp}')
    
    def set_refine_method(self, refine_method: str = 'none', refine_size: int = 720):
        if refine_method == 'none':
            self.postprocess_refine = None
        elif refine_method == 'animeseg':
            if self.refinenet_animeseg is None:
                self.refinenet_animeseg = load_refinenet(refine_method)
            self.postprocess_refine = lambda det_pred, img: \
                                        animeseg_refine(det_pred, img, self.refinenet_animeseg, True, refine_size)
        elif refine_method == 'refinenet_isnet':
            if self.refinenet is None:
                self.refinenet = load_refinenet(refine_method)
            self.postprocess_refine = self._postprocess_refine
        else:
            raise NotImplementedError(f'Invalid refine method: {refine_method}')
        
    def _postprocess_refine(self, instances: AnimeInstances, img: np.ndarray, refine_size: int = 720, max_refine_batch: int = 4, **kwargs):
        
        if instances.is_empty:
            return
        
        segs = instances.masks
        is_tensor = instances.is_tensor
        if is_tensor:
            segs = segs.cpu().numpy()
        segs = segs.astype(np.float32)
        im_h, im_w = img.shape[:2]
        
        masks = []
        with torch.no_grad():
            for batch, (pt, pb, pl, pr) in prepare_refine_batch(segs, img, max_refine_batch, self.device, refine_size):
                preds = self.refinenet(batch)[0][0].sigmoid()
                if pb == 0:
                    pb = -im_h
                if pr == 0:
                    pr = -im_w
                preds = preds[..., pt: -pb, pl: -pr]
                preds  = torch.nn.functional.interpolate(preds, (im_h, im_w), mode='bilinear', align_corners=True)
                masks.append(preds.cpu()[:, 0])

        masks = (torch.concat(masks, dim=0) > self.mask_thr).to(self.device)
        if not is_tensor:
            masks = masks.cpu().numpy()
        instances.masks = masks


    def prepare_data_pipeline(self, imgs: Union[str, np.ndarray, List], det_size: int) -> Tuple[Compose, List, str]:
        
        if det_size is None:
            det_size = self.default_det_size

        target_dir = './workspace/output'
        # cast imgs to a list of np.ndarray or image_file_path  if necessary
        if isinstance(imgs, str):
            if osp.isdir(imgs):
                target_dir = imgs
                imgs = find_all_imgs(imgs, abs_path=True)
            elif osp.isfile(imgs):
                target_dir = osp.dirname(imgs)
                imgs = [imgs]
        elif isinstance(imgs, np.ndarray) or isinstance(imgs, str):
            imgs = [imgs]
        elif isinstance(imgs, List):
            if len(imgs) > 0:
                if isinstance(imgs[0], np.ndarray) or isinstance(imgs[0], str):
                    pass
                else:
                    raise NotImplementedError
        else:
            raise NotImplementedError

        test_pipeline = lambda img: single_image_preprocess(img, pipeline=self.default_data_pipeline)
        return test_pipeline, imgs, target_dir

    def save_visualization(self, out_file: str, img: np.ndarray, instances: AnimeInstances):
        drawed = instances.draw_instances(img)
        mmcv.imwrite(drawed, out_file)
    
    def postprocess_results(self, results: DetDataSample, img: np.ndarray) -> None:
        if self.postprocess_refine is not None:
            self.postprocess_refine(results, img)

    def set_mask_threshold(self, mask_thr: float):
        self.model.bbox_head.test_cfg['mask_thr_binary'] = mask_thr

    def set_max_instance(self, num_ins):
        self.model.bbox_head.test_cfg['max_per_img'] = num_ins