Spaces:
Running
Running
File size: 28,278 Bytes
395d300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
import mmcv, torch
from tqdm import tqdm
from einops import rearrange
import os
import os.path as osp
import cv2
import gc
import math
from .anime_instances import AnimeInstances
import numpy as np
from typing import List, Tuple, Union, Optional, Callable
from mmengine import Config
from mmengine.model.utils import revert_sync_batchnorm
from mmdet.utils import register_all_modules, get_test_pipeline_cfg
from mmdet.apis import init_detector
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample, SampleList
from mmdet.structures.bbox.transforms import scale_boxes, get_box_wh
from mmdet.models.dense_heads.rtmdet_ins_head import RTMDetInsHead
from pycocotools.coco import COCO
from mmcv.transforms import Compose
from mmdet.models.detectors.single_stage import SingleStageDetector
from utils.logger import LOGGER
from utils.io_utils import square_pad_resize, find_all_imgs, imglist2grid, mask2rle, dict2json, scaledown_maxsize, resize_pad
from utils.constants import DEFAULT_DEVICE, CATEGORIES
from utils.booru_tagger import Tagger
from .models.animeseg_refine import AnimeSegmentation, load_refinenet, get_mask
from .models.rtmdet_inshead_custom import RTMDetInsSepBNHeadCustom
from torchvision.ops.boxes import box_iou
import torch.nn.functional as F
def prepare_refine_batch(segmentations: np.ndarray, img: np.ndarray, max_batch_size: int = 4, device: str = 'cpu', input_size: int = 720):
img, (pt, pb, pl, pr) = resize_pad(img, input_size, pad_value=(0, 0, 0))
img = img.transpose((2, 0, 1)).astype(np.float32) / 255.
batch = []
num_seg = len(segmentations)
for ii, seg in enumerate(segmentations):
seg, _ = resize_pad(seg, input_size, 0)
seg = seg[None, ...]
batch.append(np.concatenate((img, seg)))
if ii == num_seg - 1:
yield torch.from_numpy(np.array(batch)).to(device), (pt, pb, pl, pr)
elif len(batch) >= max_batch_size:
yield torch.from_numpy(np.array(batch)).to(device), (pt, pb, pl, pr)
batch = []
VALID_REFINEMETHODS = {'animeseg', 'none'}
register_all_modules()
def single_image_preprocess(img: Union[str, np.ndarray], pipeline: Compose):
if isinstance(img, str):
img = mmcv.imread(img)
elif not isinstance(img, np.ndarray):
raise NotImplementedError
# img = square_pad_resize(img, 1024)[0]
data_ = dict(img=img, img_id=0)
data_ = pipeline(data_)
data_['inputs'] = [data_['inputs']]
data_['data_samples'] = [data_['data_samples']]
return data_, img
def animeseg_refine(det_pred: DetDataSample, img: np.ndarray, net: AnimeSegmentation, to_rgb=True, input_size: int = 1024):
num_pred = len(det_pred.pred_instances)
if num_pred < 1:
return
with torch.no_grad():
if to_rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
seg_thr = 0.5
mask = get_mask(net, img, s=input_size)[..., 0]
mask = (mask > seg_thr)
ins_masks = det_pred.pred_instances.masks
if isinstance(ins_masks, torch.Tensor):
tensor_device = ins_masks.device
tensor_dtype = ins_masks.dtype
to_tensor = True
ins_masks = ins_masks.cpu().numpy()
area_original = np.sum(ins_masks, axis=(1, 2))
masks_refined = np.bitwise_and(ins_masks, mask[None, ...])
area_refined = np.sum(masks_refined, axis=(1, 2))
for ii in range(num_pred):
if area_refined[ii] / area_original[ii] > 0.3:
ins_masks[ii] = masks_refined[ii]
ins_masks = np.ascontiguousarray(ins_masks)
# for ii, insm in enumerate(ins_masks):
# cv2.imwrite(f'{ii}.png', insm.astype(np.uint8) * 255)
if to_tensor:
ins_masks = torch.from_numpy(ins_masks).to(dtype=tensor_dtype).to(device=tensor_device)
det_pred.pred_instances.masks = ins_masks
# rst = np.concatenate((mask * img + 1 - mask, mask * 255), axis=2).astype(np.uint8)
# cv2.imwrite('rst.png', rst)
# def refinenet_forward(det_pred: DetDataSample, img: np.ndarray, net: AnimeSegmentation, to_rgb=True, input_size: int = 1024):
# num_pred = len(det_pred.pred_instances)
# if num_pred < 1:
# return
# with torch.no_grad():
# if to_rgb:
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# seg_thr = 0.5
# h0, w0 = h, w = img.shape[0], img.shape[1]
# if h > w:
# h, w = input_size, int(input_size * w / h)
# else:
# h, w = int(input_size * h / w), input_size
# ph, pw = input_size - h, input_size - w
# tmpImg = np.zeros([s, s, 3], dtype=np.float32)
# tmpImg[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h)) / 255
# tmpImg = tmpImg.transpose((2, 0, 1))
# tmpImg = torch.from_numpy(tmpImg).unsqueeze(0).type(torch.FloatTensor).to(model.device)
# with torch.no_grad():
# if use_amp:
# with amp.autocast():
# pred = model(tmpImg)
# pred = pred.to(dtype=torch.float32)
# else:
# pred = model(tmpImg)
# pred = pred[0, :, ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
# pred = cv2.resize(pred.cpu().numpy().transpose((1, 2, 0)), (w0, h0))[:, :, np.newaxis]
# return pred
# mask = (mask > seg_thr)
# ins_masks = det_pred.pred_instances.masks
# if isinstance(ins_masks, torch.Tensor):
# tensor_device = ins_masks.device
# tensor_dtype = ins_masks.dtype
# to_tensor = True
# ins_masks = ins_masks.cpu().numpy()
# area_original = np.sum(ins_masks, axis=(1, 2))
# masks_refined = np.bitwise_and(ins_masks, mask[None, ...])
# area_refined = np.sum(masks_refined, axis=(1, 2))
# for ii in range(num_pred):
# if area_refined[ii] / area_original[ii] > 0.3:
# ins_masks[ii] = masks_refined[ii]
# ins_masks = np.ascontiguousarray(ins_masks)
# # for ii, insm in enumerate(ins_masks):
# # cv2.imwrite(f'{ii}.png', insm.astype(np.uint8) * 255)
# if to_tensor:
# ins_masks = torch.from_numpy(ins_masks).to(dtype=tensor_dtype).to(device=tensor_device)
# det_pred.pred_instances.masks = ins_masks
def read_imglst_from_txt(filep) -> List[str]:
with open(filep, 'r', encoding='utf8') as f:
lines = f.read().splitlines()
return lines
class AnimeInsSeg:
def __init__(self, ckpt: str, default_det_size: int = 640, device: str = None,
refine_kwargs: dict = {'refine_method': 'refinenet_isnet'},
tagger_path: str = 'models/wd-v1-4-swinv2-tagger-v2/model.onnx', mask_thr=0.3) -> None:
self.ckpt = ckpt
self.default_det_size = default_det_size
self.device = DEFAULT_DEVICE if device is None else device
# init detector in mmdet's way
ckpt = torch.load(ckpt, map_location='cpu')
cfg = Config.fromstring(ckpt['meta']['cfg'].replace('file_client_args', 'backend_args'), file_format='.py')
cfg.visualizer = []
cfg.vis_backends = {}
cfg.default_hooks.pop('visualization')
# self.model: SingleStageDetector = init_detector(cfg, checkpoint=None, device='cpu')
model = MODELS.build(cfg.model)
model = revert_sync_batchnorm(model)
self.model = model.to(self.device).eval()
self.model.load_state_dict(ckpt['state_dict'], strict=False)
self.model = self.model.to(self.device).eval()
self.cfg = cfg.copy()
test_pipeline = get_test_pipeline_cfg(self.cfg.copy())
test_pipeline[0].type = 'mmdet.LoadImageFromNDArray'
test_pipeline = Compose(test_pipeline)
self.default_data_pipeline = test_pipeline
self.refinenet = None
self.refinenet_animeseg: AnimeSegmentation = None
self.postprocess_refine: Callable = None
if refine_kwargs is not None:
self.set_refine_method(**refine_kwargs)
self.tagger = None
self.tagger_path = tagger_path
self.mask_thr = mask_thr
def init_tagger(self, tagger_path: str = None):
tagger_path = self.tagger_path if tagger_path is None else tagger_path
self.tagger = Tagger(self.tagger_path)
def infer_tags(self, instances: AnimeInstances, img: np.ndarray, infer_grey: bool = False):
if self.tagger is None:
self.init_tagger()
if infer_grey:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[..., None][..., [0, 0, 0]]
num_ins = len(instances)
for ii in range(num_ins):
bbox = instances.bboxes[ii]
mask = instances.masks[ii]
if isinstance(bbox, torch.Tensor):
bbox = bbox.cpu().numpy()
mask = mask.cpu().numpy()
bbox = bbox.astype(np.int32)
crop = img[bbox[1]: bbox[3] + bbox[1], bbox[0]: bbox[2] + bbox[0]].copy()
mask = mask[bbox[1]: bbox[3] + bbox[1], bbox[0]: bbox[2] + bbox[0]]
crop[mask == 0] = 255
tags, character_tags = self.tagger.label_cv2_bgr(crop)
exclude_tags = ['simple_background', 'white_background']
valid_tags = []
for tag in tags:
if tag in exclude_tags:
continue
valid_tags.append(tag)
instances.tags[ii] = ' '.join(valid_tags)
instances.character_tags[ii] = character_tags
@torch.no_grad()
def infer_embeddings(self, imgs, det_size = None):
def hijack_bbox_mask_post_process(
self,
results,
mask_feat,
cfg,
rescale: bool = False,
with_nms: bool = True,
img_meta: Optional[dict] = None):
stride = self.prior_generator.strides[0][0]
if rescale:
assert img_meta.get('scale_factor') is not None
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
if hasattr(results, 'score_factors'):
# TODO: Add sqrt operation in order to be consistent with
# the paper.
score_factors = results.pop('score_factors')
results.scores = results.scores * score_factors
# filter small size bboxes
if cfg.get('min_bbox_size', -1) >= 0:
w, h = get_box_wh(results.bboxes)
valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
if not valid_mask.all():
results = results[valid_mask]
# results.mask_feat = mask_feat
return results, mask_feat
def hijack_detector_predict(self: SingleStageDetector,
batch_inputs: torch.Tensor,
batch_data_samples: SampleList,
rescale: bool = True) -> SampleList:
x = self.extract_feat(batch_inputs)
bbox_head: RTMDetInsSepBNHeadCustom = self.bbox_head
old_postprocess = RTMDetInsSepBNHeadCustom._bbox_mask_post_process
RTMDetInsSepBNHeadCustom._bbox_mask_post_process = hijack_bbox_mask_post_process
# results_list = bbox_head.predict(
# x, batch_data_samples, rescale=rescale)
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
outs = bbox_head(x)
results_list = bbox_head.predict_by_feat(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
# batch_data_samples = self.add_pred_to_datasample(
# batch_data_samples, results_list)
RTMDetInsSepBNHeadCustom._bbox_mask_post_process = old_postprocess
return results_list
old_predict = SingleStageDetector.predict
SingleStageDetector.predict = hijack_detector_predict
test_pipeline, imgs, _ = self.prepare_data_pipeline(imgs, det_size)
if len(imgs) > 1:
imgs = tqdm(imgs)
model = self.model
img = imgs[0]
data_, img = test_pipeline(img)
data = model.data_preprocessor(data_, False)
instance_data, mask_feat = model(**data, mode='predict')[0]
SingleStageDetector.predict = old_predict
# print((instance_data.scores > 0.9).sum())
return img, instance_data, mask_feat
def segment_with_bboxes(self, img, bboxes: torch.Tensor, instance_data, mask_feat: torch.Tensor):
# instance_data.bboxes: x1, y1, x2, y2
maxidx = torch.argmax(instance_data.scores)
bbox = instance_data.bboxes[maxidx].cpu().numpy()
p1, p2 = (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3]))
tgt_bboxes = instance_data.bboxes
im_h, im_w = img.shape[:2]
long_side = max(im_h, im_w)
bbox_head: RTMDetInsSepBNHeadCustom = self.model.bbox_head
priors, kernels = instance_data.priors, instance_data.kernels
stride = bbox_head.prior_generator.strides[0][0]
ins_bboxes, ins_segs, scores = [], [], []
for bbox in bboxes:
bbox = torch.from_numpy(np.array([bbox])).to(tgt_bboxes.dtype).to(tgt_bboxes.device)
ioulst = box_iou(bbox, tgt_bboxes).squeeze()
matched_idx = torch.argmax(ioulst)
mask_logits = bbox_head._mask_predict_by_feat_single(
mask_feat, kernels[matched_idx][None, ...], priors[matched_idx][None, ...])
mask_logits = F.interpolate(
mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear')
mask_logits = F.interpolate(
mask_logits,
size=[long_side, long_side],
mode='bilinear',
align_corners=False)[..., :im_h, :im_w]
mask = mask_logits.sigmoid().squeeze()
mask = mask > 0.5
mask = mask.cpu().numpy()
ins_segs.append(mask)
matched_iou_score = ioulst[matched_idx]
matched_score = instance_data.scores[matched_idx]
scores.append(matched_score.cpu().item())
matched_bbox = tgt_bboxes[matched_idx]
ins_bboxes.append(matched_bbox.cpu().numpy())
# p1, p2 = (int(matched_bbox[0]), int(matched_bbox[1])), (int(matched_bbox[2]), int(matched_bbox[3]))
if len(ins_bboxes) > 0:
ins_bboxes = np.array(ins_bboxes).astype(np.int32)
ins_bboxes[:, 2:] -= ins_bboxes[:, :2]
ins_segs = np.array(ins_segs)
instances = AnimeInstances(ins_segs, ins_bboxes, scores)
self._postprocess_refine(instances, img)
drawed = instances.draw_instances(img)
# cv2.imshow('drawed', drawed)
# cv2.waitKey(0)
return instances
def set_detect_size(self, det_size: Union[int, Tuple]):
if isinstance(det_size, int):
det_size = (det_size, det_size)
self.default_data_pipeline.transforms[1].scale = det_size
self.default_data_pipeline.transforms[2].size = det_size
@torch.no_grad()
def infer(self, imgs: Union[List, str, np.ndarray],
pred_score_thr: float = 0.3,
refine_kwargs: dict = None,
output_type: str="tensor",
det_size: int = None,
save_dir: str = '',
save_visualization: bool = False,
save_annotation: str = '',
infer_tags: bool = False,
obj_id_start: int = -1,
img_id_start: int = -1,
verbose: bool = False,
infer_grey: bool = False,
save_mask_only: bool = False,
val_dir=None,
max_instances: int = 100,
**kwargs) -> Union[List[AnimeInstances], AnimeInstances, None]:
"""
Args:
imgs (str, ndarray, Sequence[str/ndarray]):
Either image files or loaded images.
Returns:
:obj:`AnimeInstances` or list[:obj:`AnimeInstances`]:
If save_annotation or save_annotation, return None.
"""
if det_size is not None:
self.set_detect_size(det_size)
if refine_kwargs is not None:
self.set_refine_method(**refine_kwargs)
self.set_max_instance(max_instances)
if isinstance(imgs, str):
if imgs.endswith('.txt'):
imgs = read_imglst_from_txt(imgs)
if save_annotation or save_visualization:
return self._infer_save_annotations(imgs, pred_score_thr, det_size, save_dir, save_visualization, \
save_annotation, infer_tags, obj_id_start, img_id_start, val_dir=val_dir)
else:
return self._infer_simple(imgs, pred_score_thr, det_size, output_type, infer_tags, verbose=verbose, infer_grey=infer_grey)
def _det_forward(self, img, test_pipeline, pred_score_thr: float = 0.3) -> Tuple[AnimeInstances, np.ndarray]:
data_, img = test_pipeline(img)
with torch.no_grad():
results: DetDataSample = self.model.test_step(data_)[0]
pred_instances = results.pred_instances
pred_instances = pred_instances[pred_instances.scores > pred_score_thr]
if len(pred_instances) < 1:
return AnimeInstances(), img
del data_
bboxes = pred_instances.bboxes.to(torch.int32)
bboxes[:, 2:] -= bboxes[:, :2]
masks = pred_instances.masks
scores = pred_instances.scores
return AnimeInstances(masks, bboxes, scores), img
def _infer_simple(self, imgs: Union[List, str, np.ndarray],
pred_score_thr: float = 0.3,
det_size: int = None,
output_type: str = "tensor",
infer_tags: bool = False,
infer_grey: bool = False,
verbose: bool = False) -> Union[DetDataSample, List[DetDataSample]]:
if isinstance(imgs, List):
return_list = True
else:
return_list = False
assert output_type in {'tensor', 'numpy'}
test_pipeline, imgs, _ = self.prepare_data_pipeline(imgs, det_size)
predictions = []
if len(imgs) > 1:
imgs = tqdm(imgs)
for img in imgs:
instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
# drawed = instances.draw_instances(img)
# cv2.imwrite('drawed.jpg', drawed)
self.postprocess_results(instances, img)
# drawed = instances.draw_instances(img)
# cv2.imwrite('drawed_post.jpg', drawed)
if infer_tags:
self.infer_tags(instances, img, infer_grey)
if output_type == 'numpy':
instances.to_numpy()
predictions.append(instances)
if return_list:
return predictions
else:
return predictions[0]
def _infer_save_annotations(self, imgs: Union[List, str, np.ndarray],
pred_score_thr: float = 0.3,
det_size: int = None,
save_dir: str = '',
save_visualization: bool = False,
save_annotation: str = '',
infer_tags: bool = False,
obj_id_start: int = 100000000000,
img_id_start: int = 100000000000,
save_mask_only: bool = False,
val_dir = None,
**kwargs) -> None:
coco_api = None
if isinstance(imgs, str) and imgs.endswith('.json'):
coco_api = COCO(imgs)
if val_dir is None:
val_dir = osp.join(osp.dirname(osp.dirname(imgs)), 'val')
imgs = coco_api.getImgIds()
imgp2ids = {}
imgps, coco_imgmetas = [], []
for imgid in imgs:
imeta = coco_api.loadImgs(imgid)[0]
imgname = imeta['file_name']
imgp = osp.join(val_dir, imgname)
imgp2ids[imgp] = imgid
imgps.append(imgp)
coco_imgmetas.append(imeta)
imgs = imgps
test_pipeline, imgs, target_dir = self.prepare_data_pipeline(imgs, det_size)
if save_dir == '':
save_dir = osp.join(target_dir, \
osp.basename(self.ckpt).replace('.ckpt', '').replace('.pth', '').replace('.pt', ''))
if not osp.exists(save_dir):
os.makedirs(save_dir)
det_annotations = []
image_meta = []
obj_id = obj_id_start + 1
image_id = img_id_start + 1
for ii, img in enumerate(tqdm(imgs)):
# prepare data
if isinstance(img, str):
img_name = osp.basename(img)
else:
img_name = f'{ii}'.zfill(12) + '.jpg'
if coco_api is not None:
image_id = imgp2ids[img]
try:
instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
except Exception as e:
raise e
if isinstance(e, torch.cuda.OutOfMemoryError):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
try:
instances, img = self._det_forward(img, test_pipeline, pred_score_thr)
except:
LOGGER.warning(f'cuda out of memory: {img_name}')
if isinstance(img, str):
img = cv2.imread(img)
instances = None
if instances is not None:
self.postprocess_results(instances, img)
if infer_tags:
self.infer_tags(instances, img)
if save_visualization:
out_file = osp.join(save_dir, img_name)
self.save_visualization(out_file, img, instances)
if save_annotation:
im_h, im_w = img.shape[:2]
image_meta.append({
"id": image_id,"height": im_h,"width": im_w,
"file_name": img_name, "id": image_id
})
if instances is not None:
for ii in range(len(instances)):
segmentation = instances.masks[ii].squeeze().cpu().numpy().astype(np.uint8)
area = segmentation.sum()
segmentation *= 255
if save_mask_only:
cv2.imwrite(osp.join(save_dir, 'mask_' + str(ii).zfill(3) + '_' +img_name+'.png'), segmentation)
else:
score = instances.scores[ii]
if isinstance(score, torch.Tensor):
score = score.item()
score = float(score)
bbox = instances.bboxes[ii].cpu().numpy()
bbox = bbox.astype(np.float32).tolist()
segmentation = mask2rle(segmentation)
tag_string = instances.tags[ii]
tag_string_character = instances.character_tags[ii]
det_annotations.append({'id': obj_id, 'category_id': 0, 'iscrowd': 0, 'score': score,
'segmentation': segmentation, 'image_id': image_id, 'area': area,
'tag_string': tag_string, 'tag_string_character': tag_string_character, 'bbox': bbox
})
obj_id += 1
image_id += 1
if save_annotation != '' and not save_mask_only:
det_meta = {"info": {},"licenses": [], "images": image_meta,
"annotations": det_annotations, "categories": CATEGORIES}
detp = save_annotation
dict2json(det_meta, detp)
LOGGER.info(f'annotations saved to {detp}')
def set_refine_method(self, refine_method: str = 'none', refine_size: int = 720):
if refine_method == 'none':
self.postprocess_refine = None
elif refine_method == 'animeseg':
if self.refinenet_animeseg is None:
self.refinenet_animeseg = load_refinenet(refine_method)
self.postprocess_refine = lambda det_pred, img: \
animeseg_refine(det_pred, img, self.refinenet_animeseg, True, refine_size)
elif refine_method == 'refinenet_isnet':
if self.refinenet is None:
self.refinenet = load_refinenet(refine_method)
self.postprocess_refine = self._postprocess_refine
else:
raise NotImplementedError(f'Invalid refine method: {refine_method}')
def _postprocess_refine(self, instances: AnimeInstances, img: np.ndarray, refine_size: int = 720, max_refine_batch: int = 4, **kwargs):
if instances.is_empty:
return
segs = instances.masks
is_tensor = instances.is_tensor
if is_tensor:
segs = segs.cpu().numpy()
segs = segs.astype(np.float32)
im_h, im_w = img.shape[:2]
masks = []
with torch.no_grad():
for batch, (pt, pb, pl, pr) in prepare_refine_batch(segs, img, max_refine_batch, self.device, refine_size):
preds = self.refinenet(batch)[0][0].sigmoid()
if pb == 0:
pb = -im_h
if pr == 0:
pr = -im_w
preds = preds[..., pt: -pb, pl: -pr]
preds = torch.nn.functional.interpolate(preds, (im_h, im_w), mode='bilinear', align_corners=True)
masks.append(preds.cpu()[:, 0])
masks = (torch.concat(masks, dim=0) > self.mask_thr).to(self.device)
if not is_tensor:
masks = masks.cpu().numpy()
instances.masks = masks
def prepare_data_pipeline(self, imgs: Union[str, np.ndarray, List], det_size: int) -> Tuple[Compose, List, str]:
if det_size is None:
det_size = self.default_det_size
target_dir = './workspace/output'
# cast imgs to a list of np.ndarray or image_file_path if necessary
if isinstance(imgs, str):
if osp.isdir(imgs):
target_dir = imgs
imgs = find_all_imgs(imgs, abs_path=True)
elif osp.isfile(imgs):
target_dir = osp.dirname(imgs)
imgs = [imgs]
elif isinstance(imgs, np.ndarray) or isinstance(imgs, str):
imgs = [imgs]
elif isinstance(imgs, List):
if len(imgs) > 0:
if isinstance(imgs[0], np.ndarray) or isinstance(imgs[0], str):
pass
else:
raise NotImplementedError
else:
raise NotImplementedError
test_pipeline = lambda img: single_image_preprocess(img, pipeline=self.default_data_pipeline)
return test_pipeline, imgs, target_dir
def save_visualization(self, out_file: str, img: np.ndarray, instances: AnimeInstances):
drawed = instances.draw_instances(img)
mmcv.imwrite(drawed, out_file)
def postprocess_results(self, results: DetDataSample, img: np.ndarray) -> None:
if self.postprocess_refine is not None:
self.postprocess_refine(results, img)
def set_mask_threshold(self, mask_thr: float):
self.model.bbox_head.test_cfg['mask_thr_binary'] = mask_thr
def set_max_instance(self, num_ins):
self.model.bbox_head.test_cfg['max_per_img'] = num_ins |