Spaces:
Runtime error
Runtime error
File size: 25,077 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, List, Optional, Tuple, Union
import cv2
import mmcv
import numpy as np
import torch
from mmengine.dist import master_only
from mmengine.structures import InstanceData, PixelData
from mmpose.datasets.datasets.utils import parse_pose_metainfo
from mmpose.registry import VISUALIZERS
from mmpose.structures import PoseDataSample
from .opencv_backend_visualizer import OpencvBackendVisualizer
from .simcc_vis import SimCCVisualizer
def _get_adaptive_scales(areas: np.ndarray,
min_area: int = 800,
max_area: int = 30000) -> np.ndarray:
"""Get adaptive scales according to areas.
The scale range is [0.5, 1.0]. When the area is less than
``min_area``, the scale is 0.5 while the area is larger than
``max_area``, the scale is 1.0.
Args:
areas (ndarray): The areas of bboxes or masks with the
shape of (n, ).
min_area (int): Lower bound areas for adaptive scales.
Defaults to 800.
max_area (int): Upper bound areas for adaptive scales.
Defaults to 30000.
Returns:
ndarray: The adaotive scales with the shape of (n, ).
"""
scales = 0.5 + (areas - min_area) / (max_area - min_area)
scales = np.clip(scales, 0.5, 1.0)
return scales
@VISUALIZERS.register_module()
class PoseLocalVisualizer(OpencvBackendVisualizer):
"""MMPose Local Visualizer.
Args:
name (str): Name of the instance. Defaults to 'visualizer'.
image (np.ndarray, optional): the origin image to draw. The format
should be RGB. Defaults to ``None``
vis_backends (list, optional): Visual backend config list. Defaults to
``None``
save_dir (str, optional): Save file dir for all storage backends.
If it is ``None``, the backend storage will not save any data.
Defaults to ``None``
bbox_color (str, tuple(int), optional): Color of bbox lines.
The tuple of color should be in BGR order. Defaults to ``'green'``
kpt_color (str, tuple(tuple(int)), optional): Color of keypoints.
The tuple of color should be in BGR order. Defaults to ``'red'``
link_color (str, tuple(tuple(int)), optional): Color of skeleton.
The tuple of color should be in BGR order. Defaults to ``None``
line_width (int, float): The width of lines. Defaults to 1
radius (int, float): The radius of keypoints. Defaults to 4
show_keypoint_weight (bool): Whether to adjust the transparency
of keypoints according to their score. Defaults to ``False``
alpha (int, float): The transparency of bboxes. Defaults to ``0.8``
Examples:
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> from mmpose.structures import PoseDataSample
>>> from mmpose.visualization import PoseLocalVisualizer
>>> pose_local_visualizer = PoseLocalVisualizer(radius=1)
>>> image = np.random.randint(0, 256,
... size=(10, 12, 3)).astype('uint8')
>>> gt_instances = InstanceData()
>>> gt_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4],
... [8, 8]]])
>>> gt_pose_data_sample = PoseDataSample()
>>> gt_pose_data_sample.gt_instances = gt_instances
>>> dataset_meta = {'skeleton_links': [[0, 1], [1, 2], [2, 3]]}
>>> pose_local_visualizer.set_dataset_meta(dataset_meta)
>>> pose_local_visualizer.add_datasample('image', image,
... gt_pose_data_sample)
>>> pose_local_visualizer.add_datasample(
... 'image', image, gt_pose_data_sample,
... out_file='out_file.jpg')
>>> pose_local_visualizer.add_datasample(
... 'image', image, gt_pose_data_sample,
... show=True)
>>> pred_instances = InstanceData()
>>> pred_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4],
... [8, 8]]])
>>> pred_instances.score = np.array([0.8, 1, 0.9, 1])
>>> pred_pose_data_sample = PoseDataSample()
>>> pred_pose_data_sample.pred_instances = pred_instances
>>> pose_local_visualizer.add_datasample('image', image,
... gt_pose_data_sample,
... pred_pose_data_sample)
"""
def __init__(self,
name: str = 'visualizer',
image: Optional[np.ndarray] = None,
vis_backends: Optional[Dict] = None,
save_dir: Optional[str] = None,
bbox_color: Optional[Union[str, Tuple[int]]] = 'green',
kpt_color: Optional[Union[str, Tuple[Tuple[int]]]] = 'red',
link_color: Optional[Union[str, Tuple[Tuple[int]]]] = None,
text_color: Optional[Union[str,
Tuple[int]]] = (255, 255, 255),
skeleton: Optional[Union[List, Tuple]] = None,
line_width: Union[int, float] = 1,
radius: Union[int, float] = 3,
show_keypoint_weight: bool = False,
backend: str = 'opencv',
alpha: float = 0.8):
super().__init__(
name=name,
image=image,
vis_backends=vis_backends,
save_dir=save_dir,
backend=backend)
self.bbox_color = bbox_color
self.kpt_color = kpt_color
self.link_color = link_color
self.line_width = line_width
self.text_color = text_color
self.skeleton = skeleton
self.radius = radius
self.alpha = alpha
self.show_keypoint_weight = show_keypoint_weight
# Set default value. When calling
# `PoseLocalVisualizer().set_dataset_meta(xxx)`,
# it will override the default value.
self.dataset_meta = {}
def set_dataset_meta(self,
dataset_meta: Dict,
skeleton_style: str = 'mmpose'):
"""Assign dataset_meta to the visualizer. The default visualization
settings will be overridden.
Args:
dataset_meta (dict): meta information of dataset.
"""
if dataset_meta.get(
'dataset_name') == 'coco' and skeleton_style == 'openpose':
dataset_meta = parse_pose_metainfo(
dict(from_file='configs/_base_/datasets/coco_openpose.py'))
if isinstance(dataset_meta, dict):
self.dataset_meta = dataset_meta.copy()
self.bbox_color = dataset_meta.get('bbox_color', self.bbox_color)
self.kpt_color = dataset_meta.get('keypoint_colors',
self.kpt_color)
self.link_color = dataset_meta.get('skeleton_link_colors',
self.link_color)
self.skeleton = dataset_meta.get('skeleton_links', self.skeleton)
# sometimes self.dataset_meta is manually set, which might be None.
# it should be converted to a dict at these times
if self.dataset_meta is None:
self.dataset_meta = {}
def _draw_instances_bbox(self, image: np.ndarray,
instances: InstanceData) -> np.ndarray:
"""Draw bounding boxes and corresponding labels of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
if 'bboxes' in instances:
bboxes = instances.bboxes
self.draw_bboxes(
bboxes,
edge_colors=self.bbox_color,
alpha=self.alpha,
line_widths=self.line_width)
else:
return self.get_image()
if 'labels' in instances and self.text_color is not None:
classes = self.dataset_meta.get('classes', None)
labels = instances.labels
positions = bboxes[:, :2]
areas = (bboxes[:, 3] - bboxes[:, 1]) * (
bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas)
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = classes[
label] if classes is not None else f'class {label}'
if isinstance(self.bbox_color,
tuple) and max(self.bbox_color) > 1:
facecolor = [c / 255.0 for c in self.bbox_color]
else:
facecolor = self.bbox_color
self.draw_texts(
label_text,
pos,
colors=self.text_color,
font_sizes=int(13 * scales[i]),
vertical_alignments='bottom',
bboxes=[{
'facecolor': facecolor,
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
}])
return self.get_image()
def _draw_instances_kpts(self,
image: np.ndarray,
instances: InstanceData,
kpt_thr: float = 0.3,
show_kpt_idx: bool = False,
skeleton_style: str = 'mmpose'):
"""Draw keypoints and skeletons (optional) of GT or prediction.
Args:
image (np.ndarray): The image to draw.
instances (:obj:`InstanceData`): Data structure for
instance-level annotations or predictions.
kpt_thr (float, optional): Minimum threshold of keypoints
to be shown. Default: 0.3.
show_kpt_idx (bool): Whether to show the index of keypoints.
Defaults to ``False``
skeleton_style (str): Skeleton style selection. Defaults to
``'mmpose'``
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
self.set_image(image)
img_h, img_w, _ = image.shape
if 'keypoints' in instances:
keypoints = instances.get('transformed_keypoints',
instances.keypoints)
if 'keypoint_scores' in instances:
scores = instances.keypoint_scores
else:
scores = np.ones(keypoints.shape[:-1])
if 'keypoints_visible' in instances:
keypoints_visible = instances.keypoints_visible
else:
keypoints_visible = np.ones(keypoints.shape[:-1])
if skeleton_style == 'openpose':
keypoints_info = np.concatenate(
(keypoints, scores[..., None], keypoints_visible[...,
None]),
axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > kpt_thr,
keypoints_info[:, 6, 2:4] > kpt_thr).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores, keypoints_visible = keypoints_info[
..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
for kpts, score, visible in zip(keypoints, scores,
keypoints_visible):
kpts = np.array(kpts, copy=False)
if self.kpt_color is None or isinstance(self.kpt_color, str):
kpt_color = [self.kpt_color] * len(kpts)
elif len(self.kpt_color) == len(kpts):
kpt_color = self.kpt_color
else:
raise ValueError(
f'the length of kpt_color '
f'({len(self.kpt_color)}) does not matches '
f'that of keypoints ({len(kpts)})')
# draw links
if self.skeleton is not None and self.link_color is not None:
if self.link_color is None or isinstance(
self.link_color, str):
link_color = [self.link_color] * len(self.skeleton)
elif len(self.link_color) == len(self.skeleton):
link_color = self.link_color
else:
raise ValueError(
f'the length of link_color '
f'({len(self.link_color)}) does not matches '
f'that of skeleton ({len(self.skeleton)})')
for sk_id, sk in enumerate(self.skeleton):
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
if not (visible[sk[0]] and visible[sk[1]]):
continue
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0
or pos1[1] >= img_h or pos2[0] <= 0
or pos2[0] >= img_w or pos2[1] <= 0
or pos2[1] >= img_h or score[sk[0]] < kpt_thr
or score[sk[1]] < kpt_thr
or link_color[sk_id] is None):
# skip the link that should not be drawn
continue
X = np.array((pos1[0], pos2[0]))
Y = np.array((pos1[1], pos2[1]))
color = link_color[sk_id]
if not isinstance(color, str):
color = tuple(int(c) for c in color)
transparency = self.alpha
if self.show_keypoint_weight:
transparency *= max(
0, min(1, 0.5 * (score[sk[0]] + score[sk[1]])))
if skeleton_style == 'openpose':
mX = np.mean(X)
mY = np.mean(Y)
length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5
angle = math.degrees(
math.atan2(Y[0] - Y[1], X[0] - X[1]))
stickwidth = 2
polygons = cv2.ellipse2Poly(
(int(mX), int(mY)),
(int(length / 2), int(stickwidth)), int(angle),
0, 360, 1)
self.draw_polygons(
polygons,
edge_colors=color,
face_colors=color,
alpha=transparency)
else:
self.draw_lines(
X, Y, color, line_widths=self.line_width)
# draw each point on image
for kid, kpt in enumerate(kpts):
if score[kid] < kpt_thr or not visible[
kid] or kpt_color[kid] is None:
# skip the point that should not be drawn
continue
color = kpt_color[kid]
if not isinstance(color, str):
color = tuple(int(c) for c in color)
transparency = self.alpha
if self.show_keypoint_weight:
transparency *= max(0, min(1, score[kid]))
self.draw_circles(
kpt,
radius=np.array([self.radius]),
face_colors=color,
edge_colors=color,
alpha=transparency,
line_widths=self.radius)
if show_kpt_idx:
kpt[0] += self.radius
kpt[1] -= self.radius
self.draw_texts(
str(kid),
kpt,
colors=color,
font_sizes=self.radius * 3,
vertical_alignments='bottom',
horizontal_alignments='center')
return self.get_image()
def _draw_instance_heatmap(
self,
fields: PixelData,
overlaid_image: Optional[np.ndarray] = None,
):
"""Draw heatmaps of GT or prediction.
Args:
fields (:obj:`PixelData`): Data structure for
pixel-level annotations or predictions.
overlaid_image (np.ndarray): The image to draw.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
if 'heatmaps' not in fields:
return None
heatmaps = fields.heatmaps
if isinstance(heatmaps, np.ndarray):
heatmaps = torch.from_numpy(heatmaps)
if heatmaps.dim() == 3:
heatmaps, _ = heatmaps.max(dim=0)
heatmaps = heatmaps.unsqueeze(0)
out_image = self.draw_featmap(heatmaps, overlaid_image)
return out_image
def _draw_instance_xy_heatmap(
self,
fields: PixelData,
overlaid_image: Optional[np.ndarray] = None,
n: int = 20,
):
"""Draw heatmaps of GT or prediction.
Args:
fields (:obj:`PixelData`): Data structure for
pixel-level annotations or predictions.
overlaid_image (np.ndarray): The image to draw.
n (int): Number of keypoint, up to 20.
Returns:
np.ndarray: the drawn image which channel is RGB.
"""
if 'heatmaps' not in fields:
return None
heatmaps = fields.heatmaps
_, h, w = heatmaps.shape
if isinstance(heatmaps, np.ndarray):
heatmaps = torch.from_numpy(heatmaps)
out_image = SimCCVisualizer().draw_instance_xy_heatmap(
heatmaps, overlaid_image, n)
out_image = cv2.resize(out_image[:, :, ::-1], (w, h))
return out_image
@master_only
def add_datasample(self,
name: str,
image: np.ndarray,
data_sample: PoseDataSample,
draw_gt: bool = True,
draw_pred: bool = True,
draw_heatmap: bool = False,
draw_bbox: bool = False,
show_kpt_idx: bool = False,
skeleton_style: str = 'mmpose',
show: bool = False,
wait_time: float = 0,
out_file: Optional[str] = None,
kpt_thr: float = 0.3,
step: int = 0) -> None:
"""Draw datasample and save to all backends.
- If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the
ground truth and the right image is the prediction.
- If ``show`` is True, all storage backends are ignored, and
the images will be displayed in a local window.
- If ``out_file`` is specified, the drawn image will be
saved to ``out_file``. t is usually used when the display
is not available.
Args:
name (str): The image identifier
image (np.ndarray): The image to draw
data_sample (:obj:`PoseDataSample`, optional): The data sample
to visualize
draw_gt (bool): Whether to draw GT PoseDataSample. Default to
``True``
draw_pred (bool): Whether to draw Prediction PoseDataSample.
Defaults to ``True``
draw_bbox (bool): Whether to draw bounding boxes. Default to
``False``
draw_heatmap (bool): Whether to draw heatmaps. Defaults to
``False``
show_kpt_idx (bool): Whether to show the index of keypoints.
Defaults to ``False``
skeleton_style (str): Skeleton style selection. Defaults to
``'mmpose'``
show (bool): Whether to display the drawn image. Default to
``False``
wait_time (float): The interval of show (s). Defaults to 0
out_file (str): Path to output file. Defaults to ``None``
kpt_thr (float, optional): Minimum threshold of keypoints
to be shown. Default: 0.3.
step (int): Global step value to record. Defaults to 0
"""
gt_img_data = None
pred_img_data = None
if draw_gt:
gt_img_data = image.copy()
gt_img_heatmap = None
# draw bboxes & keypoints
if 'gt_instances' in data_sample:
gt_img_data = self._draw_instances_kpts(
gt_img_data, data_sample.gt_instances, kpt_thr,
show_kpt_idx, skeleton_style)
if draw_bbox:
gt_img_data = self._draw_instances_bbox(
gt_img_data, data_sample.gt_instances)
# draw heatmaps
if 'gt_fields' in data_sample and draw_heatmap:
gt_img_heatmap = self._draw_instance_heatmap(
data_sample.gt_fields, image)
if gt_img_heatmap is not None:
gt_img_data = np.concatenate((gt_img_data, gt_img_heatmap),
axis=0)
if draw_pred:
pred_img_data = image.copy()
pred_img_heatmap = None
# draw bboxes & keypoints
if 'pred_instances' in data_sample:
pred_img_data = self._draw_instances_kpts(
pred_img_data, data_sample.pred_instances, kpt_thr,
show_kpt_idx, skeleton_style)
if draw_bbox:
pred_img_data = self._draw_instances_bbox(
pred_img_data, data_sample.pred_instances)
# draw heatmaps
if 'pred_fields' in data_sample and draw_heatmap:
if 'keypoint_x_labels' in data_sample.pred_instances:
pred_img_heatmap = self._draw_instance_xy_heatmap(
data_sample.pred_fields, image)
else:
pred_img_heatmap = self._draw_instance_heatmap(
data_sample.pred_fields, image)
if pred_img_heatmap is not None:
pred_img_data = np.concatenate(
(pred_img_data, pred_img_heatmap), axis=0)
# merge visualization results
if gt_img_data is not None and pred_img_data is not None:
if gt_img_heatmap is None and pred_img_heatmap is not None:
gt_img_data = np.concatenate((gt_img_data, image), axis=0)
elif gt_img_heatmap is not None and pred_img_heatmap is None:
pred_img_data = np.concatenate((pred_img_data, image), axis=0)
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
elif gt_img_data is not None:
drawn_img = gt_img_data
else:
drawn_img = pred_img_data
# It is convenient for users to obtain the drawn image.
# For example, the user wants to obtain the drawn image and
# save it as a video during video inference.
self.set_image(drawn_img)
if show:
self.show(drawn_img, win_name=name, wait_time=wait_time)
if out_file is not None:
mmcv.imwrite(drawn_img[..., ::-1], out_file)
else:
# save drawn_img to backends
self.add_image(name, drawn_img, step)
return self.get_image()
|