Spaces:
Runtime error
Runtime error
File size: 15,475 Bytes
cc0dd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from itertools import chain
from typing import Sequence
import torch
import torch.nn as nn
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule, ModuleList, Sequential
from mmpretrain.registry import MODELS
from ..utils import (ChannelMultiheadAttention, PositionEncodingFourier,
build_norm_layer)
from .base_backbone import BaseBackbone
from .convnext import ConvNeXtBlock
class SDTAEncoder(BaseModule):
"""A PyTorch implementation of split depth-wise transpose attention (SDTA)
encoder.
Inspiration from
https://github.com/mmaaz60/EdgeNeXt
Args:
in_channel (int): Number of input channels.
drop_path_rate (float): Stochastic depth dropout rate.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
mlp_ratio (int): Number of channels ratio in the MLP.
Defaults to 4.
use_pos_emb (bool): Whether to use position encoding.
Defaults to True.
num_heads (int): Number of heads in the multihead attention.
Defaults to 8.
qkv_bias (bool): Whether to use bias in the multihead attention.
Defaults to True.
attn_drop (float): Dropout rate of the attention.
Defaults to 0.
proj_drop (float): Dropout rate of the projection.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
norm_cfg (dict): Dictionary to construct normalization layer.
Defaults to ``dict(type='LN')``.
act_cfg (dict): Dictionary to construct activation layer.
Defaults to ``dict(type='GELU')``.
scales (int): Number of scales. Default to 1.
"""
def __init__(self,
in_channel,
drop_path_rate=0.,
layer_scale_init_value=1e-6,
mlp_ratio=4,
use_pos_emb=True,
num_heads=8,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='GELU'),
scales=1,
init_cfg=None):
super(SDTAEncoder, self).__init__(init_cfg=init_cfg)
conv_channels = max(
int(math.ceil(in_channel / scales)),
int(math.floor(in_channel // scales)))
self.conv_channels = conv_channels
self.num_convs = scales if scales == 1 else scales - 1
self.conv_modules = ModuleList()
for i in range(self.num_convs):
self.conv_modules.append(
nn.Conv2d(
conv_channels,
conv_channels,
kernel_size=3,
padding=1,
groups=conv_channels))
self.pos_embed = PositionEncodingFourier(
embed_dims=in_channel) if use_pos_emb else None
self.norm_csa = build_norm_layer(norm_cfg, in_channel)
self.gamma_csa = nn.Parameter(
layer_scale_init_value * torch.ones(in_channel),
requires_grad=True) if layer_scale_init_value > 0 else None
self.csa = ChannelMultiheadAttention(
embed_dims=in_channel,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop)
self.norm = build_norm_layer(norm_cfg, in_channel)
self.pointwise_conv1 = nn.Linear(in_channel, mlp_ratio * in_channel)
self.act = MODELS.build(act_cfg)
self.pointwise_conv2 = nn.Linear(mlp_ratio * in_channel, in_channel)
self.gamma = nn.Parameter(
layer_scale_init_value * torch.ones(in_channel),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
shortcut = x
spx = torch.split(x, self.conv_channels, dim=1)
for i in range(self.num_convs):
if i == 0:
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.conv_modules[i](sp)
if i == 0:
out = sp
else:
out = torch.cat((out, sp), 1)
x = torch.cat((out, spx[self.num_convs]), 1)
# Channel Self-attention
B, C, H, W = x.shape
x = x.reshape(B, C, H * W).permute(0, 2, 1)
if self.pos_embed:
pos_encoding = self.pos_embed((B, H, W))
pos_encoding = pos_encoding.reshape(B, -1,
x.shape[1]).permute(0, 2, 1)
x += pos_encoding
x = x + self.drop_path(self.gamma_csa * self.csa(self.norm_csa(x)))
x = x.reshape(B, H, W, C)
# Inverted Bottleneck
x = self.norm(x)
x = self.pointwise_conv1(x)
x = self.act(x)
x = self.pointwise_conv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (B, H, W, C) -> (B, C, H, W)
x = shortcut + self.drop_path(x)
return x
@MODELS.register_module()
class EdgeNeXt(BaseBackbone):
"""EdgeNeXt.
A PyTorch implementation of: `EdgeNeXt: Efficiently Amalgamated
CNN-Transformer Architecture for Mobile Vision Applications
<https://arxiv.org/abs/2206.10589>`_
Inspiration from
https://github.com/mmaaz60/EdgeNeXt
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architectures in ``EdgeNeXt.arch_settings``.
And if dict, it should include the following keys:
- channels (list[int]): The number of channels at each stage.
- depths (list[int]): The number of blocks at each stage.
- num_heads (list[int]): The number of heads at each stage.
Defaults to 'xxsmall'.
in_channels (int): The number of input channels.
Defaults to 3.
global_blocks (list[int]): The number of global blocks.
Defaults to [0, 1, 1, 1].
global_block_type (list[str]): The type of global blocks.
Defaults to ['None', 'SDTA', 'SDTA', 'SDTA'].
drop_path_rate (float): Stochastic depth dropout rate.
Defaults to 0.
layer_scale_init_value (float): Initial value of layer scale.
Defaults to 1e-6.
linear_pw_conv (bool): Whether to use linear layer to do pointwise
convolution. Defaults to False.
mlp_ratio (int): The number of channel ratio in MLP layers.
Defaults to 4.
conv_kernel_size (list[int]): The kernel size of convolutional layers
at each stage. Defaults to [3, 5, 7, 9].
use_pos_embd_csa (list[bool]): Whether to use positional embedding in
Channel Self-Attention. Defaults to [False, True, False, False].
use_pos_emebd_global (bool): Whether to use positional embedding for
whole network. Defaults to False.
d2_scales (list[int]): The number of channel groups used for SDTA at
each stage. Defaults to [2, 2, 3, 4].
norm_cfg (dict): The config of normalization layer.
Defaults to ``dict(type='LN2d', eps=1e-6)``.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
gap_before_final_norm (bool): Whether to globally average the feature
map before the final norm layer. Defaults to True.
act_cfg (dict): The config of activation layer.
Defaults to ``dict(type='GELU')``.
init_cfg (dict, optional): Config for initialization.
Defaults to None.
"""
arch_settings = {
'xxsmall': { # parameters: 1.3M
'channels': [24, 48, 88, 168],
'depths': [2, 2, 6, 2],
'num_heads': [4, 4, 4, 4]
},
'xsmall': { # parameters: 2.3M
'channels': [32, 64, 100, 192],
'depths': [3, 3, 9, 3],
'num_heads': [4, 4, 4, 4]
},
'small': { # parameters: 5.6M
'channels': [48, 96, 160, 304],
'depths': [3, 3, 9, 3],
'num_heads': [8, 8, 8, 8]
},
'base': { # parameters: 18.51M
'channels': [80, 160, 288, 584],
'depths': [3, 3, 9, 3],
'num_heads': [8, 8, 8, 8]
},
}
def __init__(self,
arch='xxsmall',
in_channels=3,
global_blocks=[0, 1, 1, 1],
global_block_type=['None', 'SDTA', 'SDTA', 'SDTA'],
drop_path_rate=0.,
layer_scale_init_value=1e-6,
linear_pw_conv=True,
mlp_ratio=4,
conv_kernel_sizes=[3, 5, 7, 9],
use_pos_embd_csa=[False, True, False, False],
use_pos_embd_global=False,
d2_scales=[2, 2, 3, 4],
norm_cfg=dict(type='LN2d', eps=1e-6),
out_indices=-1,
frozen_stages=0,
gap_before_final_norm=True,
act_cfg=dict(type='GELU'),
init_cfg=None):
super(EdgeNeXt, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in self.arch_settings, \
f'Arch {arch} is not in default archs ' \
f'{set(self.arch_settings)}'
self.arch_settings = self.arch_settings[arch]
elif isinstance(arch, dict):
essential_keys = {'channels', 'depths', 'num_heads'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.channels = self.arch_settings['channels']
self.depths = self.arch_settings['depths']
self.num_heads = self.arch_settings['num_heads']
self.num_layers = len(self.depths)
self.use_pos_embd_global = use_pos_embd_global
for g in global_block_type:
assert g in ['None',
'SDTA'], f'Global block type {g} is not supported'
self.num_stages = len(self.depths)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = 4 + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.gap_before_final_norm = gap_before_final_norm
if self.use_pos_embd_global:
self.pos_embed = PositionEncodingFourier(
embed_dims=self.channels[0])
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [
x.item()
for x in torch.linspace(0, drop_path_rate, sum(self.depths))
]
self.downsample_layers = ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, self.channels[0], kernel_size=4, stride=4),
build_norm_layer(norm_cfg, self.channels[0]),
)
self.downsample_layers.append(stem)
self.stages = ModuleList()
block_idx = 0
for i in range(self.num_stages):
depth = self.depths[i]
channels = self.channels[i]
if i >= 1:
downsample_layer = nn.Sequential(
build_norm_layer(norm_cfg, self.channels[i - 1]),
nn.Conv2d(
self.channels[i - 1],
channels,
kernel_size=2,
stride=2,
))
self.downsample_layers.append(downsample_layer)
stage_blocks = []
for j in range(depth):
if j > depth - global_blocks[i] - 1:
stage_blocks.append(
SDTAEncoder(
in_channel=channels,
drop_path_rate=dpr[block_idx + j],
mlp_ratio=mlp_ratio,
scales=d2_scales[i],
use_pos_emb=use_pos_embd_csa[i],
num_heads=self.num_heads[i],
))
else:
dw_conv_cfg = dict(
kernel_size=conv_kernel_sizes[i],
padding=conv_kernel_sizes[i] // 2,
)
stage_blocks.append(
ConvNeXtBlock(
in_channels=channels,
dw_conv_cfg=dw_conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
linear_pw_conv=linear_pw_conv,
drop_path_rate=dpr[block_idx + j],
layer_scale_init_value=layer_scale_init_value,
))
block_idx += depth
stage_blocks = Sequential(*stage_blocks)
self.stages.append(stage_blocks)
if i in self.out_indices:
out_norm_cfg = dict(type='LN') if self.gap_before_final_norm \
else norm_cfg
norm_layer = build_norm_layer(out_norm_cfg, channels)
self.add_module(f'norm{i}', norm_layer)
def init_weights(self) -> None:
# TODO: need to be implemented in the future
return super().init_weights()
def forward(self, x):
outs = []
for i, stage in enumerate(self.stages):
x = self.downsample_layers[i](x)
x = stage(x)
if self.pos_embed and i == 0:
B, _, H, W = x.shape
x += self.pos_embed((B, H, W))
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap.flatten(1)))
else:
# The output of LayerNorm2d may be discontiguous, which
# may cause some problem in the downstream tasks
outs.append(norm_layer(x).contiguous())
return tuple(outs)
def _freeze_stages(self):
for i in range(self.frozen_stages):
downsample_layer = self.downsample_layers[i]
stage = self.stages[i]
downsample_layer.eval()
stage.eval()
for param in chain(downsample_layer.parameters(),
stage.parameters()):
param.requires_grad = False
def train(self, mode=True):
super(EdgeNeXt, self).train(mode)
self._freeze_stages()
|