Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,521 Bytes
e428df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
import ast
import math
import base64
from io import BytesIO
import torch
import decord
import imageio
import numpy as np
from PIL import Image
from decord import VideoReader, cpu
from moviepy.editor import VideoFileClip
from transformers import StoppingCriteria
from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector
from scenedetect.stats_manager import StatsManager
from .constants import NUM_FRAMES, MAX_FRAMES, NUM_FRAMES_PER_SECOND, MMODAL_INDEX_TOKEN, IMAGE_TOKEN_INDEX
def merge_scenes(cut_list, cut_scores, scene_list,num_frames,max_scene_num=4, num_frame_per_scene=8, min_frames_per_scene=30):
if len(scene_list) == len(cut_list) and len(scene_list) == 0:
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video
return [frame_ids]
scene_list, cut_results = merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores,scene_list, max_scene_num)
prev_cut_point = 0
list_of_scene_frames = []
for (cur_cut_point, _) in cut_results:
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int))
list_of_scene_frames.append(frame_ids)
prev_cut_point = cur_cut_point
if cur_cut_point < num_frames:
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int)
list_of_scene_frames.append(frame_ids)
return list_of_scene_frames
def merge_scenes_not_exeed_max_scene_num(cut_list,cut_scores, scene_list, max_scene_num):
cut_frames = [ele.get_frames() for ele in cut_list]
cut_results = list(zip(cut_frames, cut_scores))
while len(scene_list) > max_scene_num:
min_idx = np.argmin(cut_scores)
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx]
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx]
# merge scene list
num_scenes = len(scene_list)
#print("Current min_idx:", min_idx)
s1 = scene_list[min_idx]
s2 = scene_list[min_idx+1]
new_scene = (s1[0], s2[1])
if min_idx == 0:
# merge the first two scenes
new_scene_list = [new_scene] + scene_list[2:]
elif min_idx == num_scenes - 1:
# # merge the last two scenes
new_scene_list = scene_list[:min_idx-1] + [new_scene]
else:
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:]
scene_list = new_scene_list
cut_results = list(zip(cut_frames, cut_scores))
return scene_list, cut_results
def split_video_into_scenes(video_path, threshold=27.0, max_scene_num=10, num_frame_per_scene=8):
# Open video, create a scene manager, and add a detector.
video = open_video(video_path)
stats_manager = StatsManager()
scene_manager = SceneManager(stats_manager)
detector = ContentDetector(threshold=threshold)
scene_manager.add_detector(detector)
scene_manager.detect_scenes(video)
scene_list = scene_manager.get_scene_list()
cut_list = scene_manager.get_cut_list()
num_frames = video.duration.get_frames()
if len(scene_list) == len(cut_list) and len(scene_list) == 0:
frame_ids = np.linspace(0, num_frames-1, num_frame_per_scene, dtype=int) # only one scene for current video
return [frame_ids]
assert len(scene_list) == len(cut_list) + 1, f"inconsistent lengths for scene list ({len(scene_list)}) vs. cut list ({len(cut_list)})"
cut_frames = [ele.get_frames() for ele in cut_list]
cut_scores = [stats_manager.get_metrics(f, ["delta_lum"])[0] for f in cut_frames]
cut_results = list(zip(cut_frames, cut_scores))
#print(f"Original cut scores: {cut_scores}, original scene list: {scene_list}")
while len(scene_list) > max_scene_num:
min_idx = np.argmin(cut_scores)
cut_frames = [ele for idx, ele in enumerate(cut_frames) if idx != min_idx]
cut_scores = [ele for idx, ele in enumerate(cut_scores) if idx != min_idx]
# merge scene list
num_scenes = len(scene_list)
#print("Current min_idx:", min_idx)
s1 = scene_list[min_idx]
s2 = scene_list[min_idx+1]
new_scene = (s1[0], s2[1])
if min_idx == 0:
# merge the first two scenes
new_scene_list = [new_scene] + scene_list[2:]
elif min_idx == num_scenes - 1:
# # merge the last two scenes
new_scene_list = scene_list[:min_idx-1] + [new_scene]
else:
new_scene_list = scene_list[:min_idx] + [new_scene] + scene_list[min_idx+2:]
scene_list = new_scene_list
cut_results = list(zip(cut_frames, cut_scores))
#print(f"Cut scores after merging: {cut_scores}, scene list: {scene_list}")
prev_cut_point = 0
list_of_scene_frames = []
for (cur_cut_point, _) in cut_results:
frame_ids = list(np.linspace(prev_cut_point, cur_cut_point-1, num_frame_per_scene, dtype=int))
list_of_scene_frames.append(frame_ids)
prev_cut_point = cur_cut_point
if cur_cut_point < num_frames:
frame_ids = np.linspace(cur_cut_point, num_frames-1, num_frame_per_scene, dtype=int)
list_of_scene_frames.append(frame_ids)
# print(f"Finally got {len(list_of_scene_frames)} scenes where we evenly sampled {num_frame_per_scene} frames for each scene")
return list_of_scene_frames
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def get_anyres_image_grid_shape(image_size, grids, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grids (str, List[tuple[int]]): Patch segmentation grid.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if type(grids) is list:
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids]
else:
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)]
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
def process_anyres_image(image, grids, patch_size):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
grids (str, List[tuple[int]]): Patch segmentation grid.
patch_size (int): The size of the patches to be extracted.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
if type(grids) is list:
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in grids]
else:
possible_resolutions = [(x * patch_size, y * patch_size) for x, y in ast.literal_eval(grids)]
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, patch_size)
image_original_resize = resize_and_pad_image(image, (patch_size, patch_size))
image_patches = [image_original_resize] + patches
return image_patches
def chunk_list(input_list, chunk_size):
return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]
def frame_expansion(frame_list, n):
assert len(frame_list) == n * n
width, height = frame_list[0].width, frame_list[0].height
expanded_width = n * width
expanded_height = n * height
expanded_frame = Image.new('RGB', (expanded_width, expanded_height))
for i in range(n):
for j in range(n):
frame = frame_list[i * n + j]
coordinate = (j*width, i*height)
expanded_frame.paste(frame, coordinate)
return expanded_frame
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def process_images(images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
#print("Current image_aspect_ratio:", image_aspect_ratio)
if image_aspect_ratio == 'pad':
for image in images:
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
new_images.append(image)
else:
return image_processor(images, return_tensors='pt')['pixel_values']
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
def process_videos(frames, image_processor, model_cfg):
# this function only used during inference
# image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
# new_frames = []
# print("Current image_aspect_ratio:", image_aspect_ratio)
# if image_aspect_ratio == 'pad':
# for image in frames:
# image = Image.fromarray(image)
# image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
# image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
# new_frames.append(image)
# else:
# return image_processor(frames, return_tensors='pt')['pixel_values']
# if all(x.shape == new_frames[0].shape for x in new_frames):
# new_frames = torch.stack(new_frames, dim=0)
new_frames = image_processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames
return new_frames
def create_photo_grid(arr, rows=None, cols=None):
"""
Create a photo grid from a 4D numpy array with shape [t, h, w, c].
Parameters:
arr (numpy.ndarray): Input array with shape [t, h, w, c].
rows (int): Optional. Number of rows in the grid. If not set, it will be determined based on `cols` or the square root of `t`.
cols (int): Optional. Number of columns in the grid. If not set, it will be determined based on `rows` or the square root of `t`.
Returns:
numpy.ndarray: A 3D numpy array representing the photo grid.
"""
if isinstance(arr, list):
if isinstance(arr[0], Image.Image):
arr = np.stack([np.array(img) for img in arr])
elif isinstance(arr[0], np.ndarray):
arr = np.stack(arr)
else:
raise ValueError("Invalid input type. Expected list of Images or numpy arrays.")
t, h, w, c = arr.shape
# Calculate the number of rows and columns if not provided
if rows is None and cols is None:
rows = math.ceil(math.sqrt(t))
cols = math.ceil(t / rows)
elif rows is None:
rows = math.ceil(t / cols)
elif cols is None:
cols = math.ceil(t / rows)
# Check if the grid can hold all the images
if rows * cols < t:
raise ValueError(f"Not enough grid cells ({rows}x{cols}) to hold all images ({t}).")
# Create the grid array with appropriate height and width
grid_height = h * rows
grid_width = w * cols
grid = np.zeros((grid_height, grid_width, c), dtype=arr.dtype)
# Fill the grid with images
for i in range(t):
row_idx = i // cols
col_idx = i % cols
grid[row_idx*h:(row_idx+1)*h, col_idx*w:(col_idx+1)*w, :] = arr[i]
return grid
def process_image(image_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False):
image = Image.open(image_path).convert('RGB')
if image_grid:
pg = np.stack([np.array(image)] * num_frames)
grid_h = grid_w = math.ceil(math.sqrt(num_frames))
pg = create_photo_grid(pg, grid_h, grid_w)
images = [pg, np.array(image)]
else:
images = [np.array(image)]
if aspect_ratio == 'pad':
images = [Image.fromarray(f) for f in images]
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
else:
images = [Image.fromarray(f) for f in images]
images = processor.preprocess(images, return_tensors='pt')['pixel_values']
return images
def process_video(video_path, processor, aspect_ratio='pad', num_frames=NUM_FRAMES, image_grid=False, sample_scheme='uniform'):
def frame_sample(duration, mode='uniform', local_fps=None):
if mode == 'uniform':
return np.linspace(0, duration-1, num_frames, dtype=int)
elif mode == 'fps':
assert local_fps is not None
segment_len = min(local_fps // NUM_FRAMES_PER_SECOND, duration)
return np.arange(segment_len // 2, duration, segment_len, dtype=int)
else:
raise ImportError(f'Unsupported frame sampling mode: {mode}')
if isinstance(video_path, str):
if video_path.endswith('.gif'):
video_gif = imageio.get_reader(video_path)
duration, local_fps = len(video_gif), 10
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
# limit the max input frames
if len(frame_id_list) > MAX_FRAMES:
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
video_data = [frame for index, frame in enumerate(video_gif) if index in frame_id_list]
# added by lixin4ever, include the support of .webm files from sthsthv2
elif video_path.endswith('.webm'):
video_webm = VideoFileClip(video_path)
video_frames = np.array(list(video_webm.iter_frames()))
duration, local_fps = len(video_frames), video_webm.fps
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
# limit the max input frames
if len(frame_id_list) > MAX_FRAMES:
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
video_data = video_frames[frame_id_list]
else:
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) if "Valley/finetune/source_videos" not in video_path else VideoReader(uri=video_path, ctx=cpu(0), num_threads=1) # add num_threads=1 for Valley videos
duration, local_fps = len(decord_vr), float(decord_vr.get_avg_fps())
frame_id_list = frame_sample(duration, mode=sample_scheme, local_fps=local_fps)
# limit the max input frames
if len(frame_id_list) > MAX_FRAMES:
frame_id_list = np.linspace(0, duration-1, MAX_FRAMES, dtype=int)
try:
video_data = decord_vr.get_batch(frame_id_list).numpy()
except:
video_data = decord_vr.get_batch(frame_id_list).asnumpy()
# if self.data_args.use_temp_aug:
# frame_id_list = np.linspace(0, duration-1, num_frames * 2 * 2, dtype=int)
# video_data = decord_vr.get_batch(frame_id_list)
# video_frames = [Image.fromarray(f) for f in video_data.numpy()]
# chunked_video_frames = chunk_list(video_frames, 2*2)
# video_data = [frame_expansion(frame_list, 2) for frame_list in chunked_video_frames]
else:
video = video_path
frame_id_list = frame_sample(duration, mode='uniform')
video_data = [video.get_data(frame_id) for frame_id in frame_id_list]
if image_grid:
grid_h = grid_w = math.ceil(math.sqrt(num_frames))
pg = create_photo_grid(video_data, grid_h, grid_w)
video_data = [pg, *video_data]
if aspect_ratio == 'pad':
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
images = [expand2square(image, tuple(int(x*255) for x in processor.image_mean)) for image in images]
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
else:
images = [Image.fromarray(f.numpy() if isinstance(f, torch.Tensor) else f) for f in video_data]
video = processor.preprocess(images, return_tensors='pt')['pixel_values']
return video
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def tokenizer_MMODAL_token(prompt, tokenizer, MMODAL_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>')]
num_prompt_chunks = len(prompt.split(f'<{MMODAL_INDEX_TOKEN[MMODAL_token_index].lower()}>'))
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [MMODAL_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
return all(outputs)
|