File size: 34,233 Bytes
5af269e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
"""
wild mixture of
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
https://github.com/CompVis/taming-transformers
-- merci
"""

from functools import partial
from contextlib import contextmanager
import numpy as np
from tqdm import tqdm
from einops import rearrange, repeat
import logging
mainlogger = logging.getLogger('mainlogger')
import torch
import torch.nn as nn
from torchvision.utils import make_grid
import pytorch_lightning as pl
from utils.utils import instantiate_from_config
from lvdm.ema import LitEma
from lvdm.distributions import DiagonalGaussianDistribution
from lvdm.models.utils_diffusion import make_beta_schedule
from lvdm.modules.encoders.ip_resampler import ImageProjModel, Resampler
from lvdm.basics import disabled_train
from lvdm.common import (
    extract_into_tensor,
    noise_like,
    exists,
    default
)


__conditioning_keys__ = {'concat': 'c_concat',
                         'crossattn': 'c_crossattn',
                         'adm': 'y'}

class DDPM(pl.LightningModule):
    # classic DDPM with Gaussian diffusion, in image space
    def __init__(self,
                 unet_config,
                 timesteps=1000,
                 beta_schedule="linear",
                 loss_type="l2",
                 ckpt_path=None,
                 ignore_keys=[],
                 load_only_unet=False,
                 monitor=None,
                 use_ema=True,
                 first_stage_key="image",
                 image_size=256,
                 channels=3,
                 log_every_t=100,
                 clip_denoised=True,
                 linear_start=1e-4,
                 linear_end=2e-2,
                 cosine_s=8e-3,
                 given_betas=None,
                 original_elbo_weight=0.,
                 v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
                 l_simple_weight=1.,
                 conditioning_key=None,
                 parameterization="eps",  # all assuming fixed variance schedules
                 scheduler_config=None,
                 use_positional_encodings=False,
                 learn_logvar=False,
                 logvar_init=0.
                 ):
        super().__init__()
        assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
        self.parameterization = parameterization
        mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
        self.cond_stage_model = None
        self.clip_denoised = clip_denoised
        self.log_every_t = log_every_t
        self.first_stage_key = first_stage_key
        self.channels = channels
        self.temporal_length = unet_config.params.temporal_length
        self.image_size = image_size 
        if isinstance(self.image_size, int):
            self.image_size = [self.image_size, self.image_size]
        self.use_positional_encodings = use_positional_encodings
        self.model = DiffusionWrapper(unet_config, conditioning_key)
        self.use_ema = use_ema
        if self.use_ema:
            self.model_ema = LitEma(self.model)
            mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        self.use_scheduler = scheduler_config is not None
        if self.use_scheduler:
            self.scheduler_config = scheduler_config

        self.v_posterior = v_posterior
        self.original_elbo_weight = original_elbo_weight
        self.l_simple_weight = l_simple_weight

        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)

        self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
                               linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)

        self.loss_type = loss_type

        self.learn_logvar = learn_logvar
        self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
        if self.learn_logvar:
            self.logvar = nn.Parameter(self.logvar, requires_grad=True)


    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if exists(given_betas):
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
                                       cosine_s=cosine_s)
        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end
        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
                    1. - alphas_cumprod) + self.v_posterior * betas
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        if self.parameterization == "eps":
            lvlb_weights = self.betas ** 2 / (
                        2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
        elif self.parameterization == "x0":
            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
        else:
            raise NotImplementedError("mu not supported")
        # TODO how to choose this term
        lvlb_weights[0] = lvlb_weights[1]
        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
        assert not torch.isnan(self.lvlb_weights).all()

    @contextmanager
    def ema_scope(self, context=None):
        if self.use_ema:
            self.model_ema.store(self.model.parameters())
            self.model_ema.copy_to(self.model)
            if context is not None:
                mainlogger.info(f"{context}: Switched to EMA weights")
        try:
            yield None
        finally:
            if self.use_ema:
                self.model_ema.restore(self.model.parameters())
                if context is not None:
                    mainlogger.info(f"{context}: Restored training weights")

    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
        sd = torch.load(path, map_location="cpu")
        if "state_dict" in list(sd.keys()):
            sd = sd["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    mainlogger.info("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
            sd, strict=False)
        mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
        if len(missing) > 0:
            mainlogger.info(f"Missing Keys: {missing}")
        if len(unexpected) > 0:
            mainlogger.info(f"Unexpected Keys: {unexpected}")

    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).
        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, clip_denoised: bool):
        model_out = self.model(x, t)
        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        if clip_denoised:
            x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_loop(self, shape, return_intermediates=False):
        device = self.betas.device
        b = shape[0]
        img = torch.randn(shape, device=device)
        intermediates = [img]
        for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
                                clip_denoised=self.clip_denoised)
            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
                intermediates.append(img)
        if return_intermediates:
            return img, intermediates
        return img

    @torch.no_grad()
    def sample(self, batch_size=16, return_intermediates=False):
        image_size = self.image_size
        channels = self.channels
        return self.p_sample_loop((batch_size, channels, image_size, image_size),
                                  return_intermediates=return_intermediates)

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
                extract_into_tensor(self.scale_arr, t, x_start.shape) +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)

    def get_input(self, batch, k):
        x = batch[k]
        x = x.to(memory_format=torch.contiguous_format).float()
        return x

    def _get_rows_from_list(self, samples):
        n_imgs_per_row = len(samples)
        denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
        return denoise_grid

    @torch.no_grad()
    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
        log = dict()
        x = self.get_input(batch, self.first_stage_key)
        N = min(x.shape[0], N)
        n_row = min(x.shape[0], n_row)
        x = x.to(self.device)[:N]
        log["inputs"] = x

        # get diffusion row
        diffusion_row = list()
        x_start = x[:n_row]

        for t in range(self.num_timesteps):
            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
                t = t.to(self.device).long()
                noise = torch.randn_like(x_start)
                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
                diffusion_row.append(x_noisy)

        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)

        if sample:
            # get denoise row
            with self.ema_scope("Plotting"):
                samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)

            log["samples"] = samples
            log["denoise_row"] = self._get_rows_from_list(denoise_row)

        if return_keys:
            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
                return log
            else:
                return {key: log[key] for key in return_keys}
        return log


class LatentDiffusion(DDPM):
    """main class"""
    def __init__(self,
                 first_stage_config,
                 cond_stage_config,
                 num_timesteps_cond=None,
                 cond_stage_key="caption",
                 cond_stage_trainable=False,
                 cond_stage_forward=None,
                 conditioning_key=None,
                 uncond_prob=0.2,
                 uncond_type="empty_seq",
                 scale_factor=1.0,
                 scale_by_std=False,
                 encoder_type="2d",
                 only_model=False,
                 use_scale=False,
                 scale_a=1,
                 scale_b=0.3,
                 mid_step=400,
                 fix_scale_bug=False,
                 perframe_ae=True,
                 *args, **kwargs):
        self.num_timesteps_cond = default(num_timesteps_cond, 1)
        self.scale_by_std = scale_by_std
        assert self.num_timesteps_cond <= kwargs['timesteps']
        # for backwards compatibility after implementation of DiffusionWrapper
        ckpt_path = kwargs.pop("ckpt_path", None)
        ignore_keys = kwargs.pop("ignore_keys", [])
        conditioning_key = default(conditioning_key, 'crossattn')
        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)

        self.cond_stage_trainable = cond_stage_trainable
        self.cond_stage_key = cond_stage_key
        self.perframe_ae = perframe_ae

        # scale factor
        self.use_scale=use_scale
        if self.use_scale:
            self.scale_a=scale_a
            self.scale_b=scale_b
            if fix_scale_bug:
                scale_step=self.num_timesteps-mid_step
            else: #bug
                scale_step = self.num_timesteps

            scale_arr1 = np.linspace(scale_a, scale_b, mid_step)
            scale_arr2 = np.full(scale_step, scale_b)
            scale_arr = np.concatenate((scale_arr1, scale_arr2))
            scale_arr_prev = np.append(scale_a, scale_arr[:-1])
            to_torch = partial(torch.tensor, dtype=torch.float32)
            self.register_buffer('scale_arr', to_torch(scale_arr))

        try:
            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
        except:
            self.num_downs = 0
        if not scale_by_std:
            self.scale_factor = scale_factor
        else:
            self.register_buffer('scale_factor', torch.tensor(scale_factor))
        self.instantiate_first_stage(first_stage_config)
        self.instantiate_cond_stage(cond_stage_config)
        self.first_stage_config = first_stage_config
        self.cond_stage_config = cond_stage_config        
        self.clip_denoised = False

        self.cond_stage_forward = cond_stage_forward
        self.encoder_type = encoder_type
        assert(encoder_type in ["2d", "3d"])
        self.uncond_prob = uncond_prob
        self.classifier_free_guidance = True if uncond_prob > 0 else False
        assert(uncond_type in ["zero_embed", "empty_seq"])
        self.uncond_type = uncond_type


        self.restarted_from_ckpt = False
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
            self.restarted_from_ckpt = True
                

    def make_cond_schedule(self, ):
        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
        self.cond_ids[:self.num_timesteps_cond] = ids

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        if self.use_scale:  
            return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start *
                extract_into_tensor(self.scale_arr, t, x_start.shape) +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
        else:
            return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)


    def _freeze_model(self):
        for name, para in self.model.diffusion_model.named_parameters():
            para.requires_grad = False

    def instantiate_first_stage(self, config):
        model = instantiate_from_config(config)
        self.first_stage_model = model.eval()
        self.first_stage_model.train = disabled_train
        for param in self.first_stage_model.parameters():
            param.requires_grad = False

    def instantiate_cond_stage(self, config):
        if not self.cond_stage_trainable:
            model = instantiate_from_config(config)
            self.cond_stage_model = model.eval()
            self.cond_stage_model.train = disabled_train
            for param in self.cond_stage_model.parameters():
                param.requires_grad = False
        else:
            model = instantiate_from_config(config)
            self.cond_stage_model = model
    
    def get_learned_conditioning(self, c):
        if self.cond_stage_forward is None:
            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
                c = self.cond_stage_model.encode(c)
                if isinstance(c, DiagonalGaussianDistribution):
                    c = c.mode()
            else:
                c = self.cond_stage_model(c)
        else:
            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
        return c

    def get_first_stage_encoding(self, encoder_posterior, noise=None):
        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
            z = encoder_posterior.sample(noise=noise)
        elif isinstance(encoder_posterior, torch.Tensor):
            z = encoder_posterior
        else:
            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
        return self.scale_factor * z
   
    @torch.no_grad()
    def encode_first_stage(self, x):
        if self.encoder_type == "2d" and x.dim() == 5 and not self.perframe_ae:
            b, _, t, _, _ = x.shape
            x = rearrange(x, 'b c t h w -> (b t) c h w')
            reshape_back = True
        else:
            reshape_back = False
        
        if not self.perframe_ae:
            encoder_posterior = self.first_stage_model.encode(x)
            results = self.get_first_stage_encoding(encoder_posterior).detach()
        else:
            results = []
            for index in range(x.shape[2]):
                frame_batch = self.first_stage_model.encode(x[:,:,index,:,:])
                frame_result = self.get_first_stage_encoding(frame_batch).detach()
                results.append(frame_result)
            results = torch.stack(results, dim=2)
            
        if reshape_back:
            results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
        
        return results
    
    @torch.no_grad()
    def encode_first_stage_2DAE(self, x):

        b, _, t, _, _ = x.shape
        results = torch.cat([self.get_first_stage_encoding(self.first_stage_model.encode(x[:,:,i])).detach().unsqueeze(2) for i in range(t)], dim=2)
        
        return results
    
    def decode_core(self, z, **kwargs):
        if self.encoder_type == "2d" and z.dim() == 5 and not self.perframe_ae:
            b, _, t, _, _ = z.shape
            z = rearrange(z, 'b c t h w -> (b t) c h w')
            reshape_back = True
        else:
            reshape_back = False

        if not self.perframe_ae:            
            z = 1. / self.scale_factor * z
            results = self.first_stage_model.decode(z, **kwargs)
        else:
            results = []
            for index in range(z.shape[2]):
                frame_z = 1. / self.scale_factor * z[:,:,index,:,:]
                frame_result = self.first_stage_model.decode(frame_z, **kwargs)
                results.append(frame_result)
            results = torch.stack(results, dim=2)


        if reshape_back:
            results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
        return results

    @torch.no_grad()
    def decode_first_stage(self, z, **kwargs):
        return self.decode_core(z, **kwargs)

    def apply_model(self, x_noisy, t, cond, **kwargs):
        if isinstance(cond, dict):
            # hybrid case, cond is exptected to be a dict
            pass
        else:
            if not isinstance(cond, list):
                cond = [cond]
            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
            cond = {key: cond}

        x_recon = self.model(x_noisy, t, **cond, **kwargs)

        if isinstance(x_recon, tuple):
            return x_recon[0]
        else:
            return x_recon

    def _get_denoise_row_from_list(self, samples, desc=''):
        denoise_row = []
        for zd in tqdm(samples, desc=desc):
            denoise_row.append(self.decode_first_stage(zd.to(self.device)))
        n_log_timesteps = len(denoise_row)

        denoise_row = torch.stack(denoise_row)  # n_log_timesteps, b, C, H, W
        
        if denoise_row.dim() == 5:
            # img, num_imgs= n_log_timesteps * bs, grid_size=[bs,n_log_timesteps]
            denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
            denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
            denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
        elif denoise_row.dim() == 6:
            # video, grid_size=[n_log_timesteps*bs, t]
            video_length = denoise_row.shape[3]
            denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
            denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
            denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
            denoise_grid = make_grid(denoise_grid, nrow=video_length)
        else:
            raise ValueError

        return denoise_grid
 

    @torch.no_grad()
    def decode_first_stage_2DAE(self, z, **kwargs):

        b, _, t, _, _ = z.shape
        z = 1. / self.scale_factor * z
        results = torch.cat([self.first_stage_model.decode(z[:,:,i], **kwargs).unsqueeze(2) for i in range(t)], dim=2)

        return results


    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
        t_in = t
        model_out = self.apply_model(x, t_in, c, **kwargs)

        if score_corrector is not None:
            assert self.parameterization == "eps"
            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)

        if self.parameterization == "eps":
            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
        elif self.parameterization == "x0":
            x_recon = model_out
        else:
            raise NotImplementedError()

        if clip_denoised:
            x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)

        if return_x0:
            return model_mean, posterior_variance, posterior_log_variance, x_recon
        else:
            return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
        b, *_, device = *x.shape, x.device
        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
        if return_x0:
            model_mean, _, model_log_variance, x0 = outputs
        else:
            model_mean, _, model_log_variance = outputs

        noise = noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))

        if return_x0:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
        else:
            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
                      timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):

        if not log_every_t:
            log_every_t = self.log_every_t
        device = self.betas.device
        b = shape[0]        
        # sample an initial noise
        if x_T is None:
            img = torch.randn(shape, device=device)
        else:
            img = x_T

        intermediates = [img]
        if timesteps is None:
            timesteps = self.num_timesteps
        if start_T is not None:
            timesteps = min(timesteps, start_T)

        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))

        if mask is not None:
            assert x0 is not None
            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match

        for i in iterator:
            ts = torch.full((b,), i, device=device, dtype=torch.long)
            if self.shorten_cond_schedule:
                assert self.model.conditioning_key != 'hybrid'
                tc = self.cond_ids[ts].to(cond.device)
                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))

            img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
            if mask is not None:
                img_orig = self.q_sample(x0, ts)
                img = img_orig * mask + (1. - mask) * img

            if i % log_every_t == 0 or i == timesteps - 1:
                intermediates.append(img)
            if callback: callback(i)
            if img_callback: img_callback(img, i)

        if return_intermediates:
            return img, intermediates
        return img


class LatentVisualDiffusion(LatentDiffusion):
    def __init__(self, cond_img_config, finegrained=False, random_cond=False, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.random_cond = random_cond
        self.instantiate_img_embedder(cond_img_config, freeze=True)
        num_tokens = 16 if finegrained else 4
        self.image_proj_model = self.init_projector(use_finegrained=finegrained, num_tokens=num_tokens, input_dim=1024,\
                                            cross_attention_dim=1024, dim=1280)    

    def instantiate_img_embedder(self, config, freeze=True):
        embedder = instantiate_from_config(config)
        if freeze:
            self.embedder = embedder.eval()
            self.embedder.train = disabled_train
            for param in self.embedder.parameters():
                param.requires_grad = False

    def init_projector(self, use_finegrained, num_tokens, input_dim, cross_attention_dim, dim):
        if not use_finegrained:
            image_proj_model = ImageProjModel(clip_extra_context_tokens=num_tokens, cross_attention_dim=cross_attention_dim,
                clip_embeddings_dim=input_dim
            )
        else:
            image_proj_model = Resampler(dim=input_dim, depth=4, dim_head=64, heads=12, num_queries=num_tokens,
                embedding_dim=dim, output_dim=cross_attention_dim, ff_mult=4
            )
        return image_proj_model

    ## Never delete this func: it is used in log_images() and inference stage
    def get_image_embeds(self, batch_imgs):
        ## img: b c h w
        img_token = self.embedder(batch_imgs)
        img_emb = self.image_proj_model(img_token)
        return img_emb


class DiffusionWrapper(pl.LightningModule):
    def __init__(self, diff_model_config, conditioning_key):
        super().__init__()
        self.diffusion_model = instantiate_from_config(diff_model_config)
        self.conditioning_key = conditioning_key

    def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
                c_adm=None, s=None, mask=None, **kwargs):
        # temporal_context = fps is foNone
        if self.conditioning_key is None:
            out = self.diffusion_model(x, t)
        elif self.conditioning_key == 'concat':
            xc = torch.cat([x] + c_concat, dim=1)
            out = self.diffusion_model(xc, t, **kwargs)
        elif self.conditioning_key == 'crossattn':
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(x, t, context=cc, **kwargs)
        elif self.conditioning_key == 'hybrid':
            ## it is just right [b,c,t,h,w]: concatenate in channel dim
            xc = torch.cat([x] + c_concat, dim=1)
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(xc, t, context=cc)
        elif self.conditioning_key == 'resblockcond':
            cc = c_crossattn[0]
            out = self.diffusion_model(x, t, context=cc)
        elif self.conditioning_key == 'adm':
            cc = c_crossattn[0]
            out = self.diffusion_model(x, t, y=cc)
        elif self.conditioning_key == 'hybrid-adm':
            assert c_adm is not None
            xc = torch.cat([x] + c_concat, dim=1)
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(xc, t, context=cc, y=c_adm)
        elif self.conditioning_key == 'hybrid-time':
            assert s is not None
            xc = torch.cat([x] + c_concat, dim=1)
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(xc, t, context=cc, s=s)
        elif self.conditioning_key == 'concat-time-mask':
            # assert s is not None
            # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
            xc = torch.cat([x] + c_concat, dim=1)
            out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
        elif self.conditioning_key == 'concat-adm-mask':
            # assert s is not None
            # mainlogger.info('x & mask:',x.shape,c_concat[0].shape)
            if c_concat is not None:
                xc = torch.cat([x] + c_concat, dim=1)
            else:
                xc = x
            out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
        elif self.conditioning_key == 'hybrid-adm-mask':
            cc = torch.cat(c_crossattn, 1)
            if c_concat is not None:
                xc = torch.cat([x] + c_concat, dim=1)
            else:
                xc = x
            out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
        elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
            # assert s is not None
            assert c_adm is not None
            xc = torch.cat([x] + c_concat, dim=1)
            cc = torch.cat(c_crossattn, 1)
            out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
        else:
            raise NotImplementedError()

        return out