Spaces:
Runtime error
Runtime error
File size: 14,664 Bytes
6bc94ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import argparse
from ctypes import alignment
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
from pathlib import Path
import spacy
import time
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("--run_id", type=str, default="default", help= \
"Name for this model. By default, training outputs will be stored to saved_models/<run_id>/. If a model state "
"from the same run ID was previously saved, the training will restart from there. Pass -f to overwrite saved "
"states and restart from scratch.")
parser.add_argument("-m", "--models_dir", type=Path, default="saved_models",
help="Directory containing all saved models")
parser.add_argument("--weight", type=float, default=1,
help="weight of input audio for voice filter")
parser.add_argument("--griffin_lim",
action="store_true",
help="if True, use griffin-lim, else use vocoder")
parser.add_argument("--cpu", action="store_true", help=\
"If True, processing is done on CPU, even when a GPU is available.")
parser.add_argument("--no_sound", action="store_true", help=\
"If True, audio won't be played.")
parser.add_argument("--seed", type=int, default=None, help=\
"Optional random number seed value to make toolbox deterministic.")
args = parser.parse_args()
arg_dict = vars(args)
# print_args(args, parser)
# Hide GPUs from Pytorch to force CPU processing
if arg_dict.pop("cpu"):
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
print("Running a test of your configuration...\n")
import numpy as np
import soundfile as sf
import torch
import encoder.inference
import encoder.params_data
from synthesizer.inference import Synthesizer_infer
from synthesizer.utils.cleaners import add_breaks, english_cleaners_predict
from vocoder import inference as vocoder
from vocoder.display import save_attention_multiple, save_spectrogram, save_stop_tokens
from utils.argutils import print_args
from utils.default_models import ensure_default_models
from speed_changer.fixSpeed import *
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device_id)
## Print some environment information (for debugging purposes)
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
"%.1fGb total memory.\n" %
(torch.cuda.device_count(),
device_id,
gpu_properties.name,
gpu_properties.major,
gpu_properties.minor,
gpu_properties.total_memory / 1e9))
else:
print("Using CPU for inference.\n")
## Load the models one by one.
if not args.griffin_lim:
print("Preparing the encoder, the synthesizer and the vocoder...")
else:
print("Preparing the encoder and the synthesizer...")
ensure_default_models(args.run_id, Path("saved_models"))
encoder.inference.load_model(list(args.models_dir.glob(f"{args.run_id}/encoder.pt"))[0])
synthesizer = Synthesizer_infer(list(args.models_dir.glob(f"{args.run_id}/synthesizer.pt"))[0])
if not args.griffin_lim:
vocoder.load_model(list(args.models_dir.glob(f"{args.run_id}/vocoder.pt"))[0])
# ## Run a test
# print("Testing your configuration with small inputs.")
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
# # sampling rate, which may differ.
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
# # The sampling rate is the number of values (samples) recorded per second, it is set to
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
# # to an audio of 1 second.
# print("\tTesting the encoder...")
# encoder.embed_utterance(np.zeros(encoder.sampling_rate))
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
# # returns, but here we're going to make one ourselves just for the sake of showing that it's
# # possible.
# embed = np.random.rand(speaker_embedding_size)
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own
# # embeddings it will be).
# embed /= np.linalg.norm(embed)
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to
# # illustrate that
# embeds = [embed, np.zeros(speaker_embedding_size)]
# texts = ["test 1", "test 2"]
# print("\tTesting the synthesizer... (loading the model will output a lot of text)")
# mels = synthesizer.synthesize_spectrograms(texts, embeds)
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
# # can concatenate the mel spectrograms to a single one.
# mel = np.concatenate(mels, axis=1)
# # The vocoder can take a callback function to display the generation. More on that later. For
# # now we'll simply hide it like this:
# if not args.griffin_lim:
# no_action = lambda *args: None
# print("\tTesting the vocoder...")
# # For the sake of making this test short, we'll pass a short target length. The target length
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
# # that has a detrimental effect on the quality of the audio. The default parameters are
# # recommended in general.
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
# print("All test passed! You can now synthesize speech.\n\n")
## Interactive speech generation
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
"show how you can interface this project easily with your own. See the source code for "
"an explanation of what is happening.\n")
print("Interactive generation loop")
num_generated = 0
nlp = spacy.load('en_core_web_sm')
weight = arg_dict["weight"] # 声音美颜的用户语音权重
amp = 1
while True:
# try:
# Get the reference audio filepath
num_of_input_audio = 1
for i in range(num_of_input_audio):
# Computing the embedding
# First, we load the wav using the function that the speaker encoder provides. This is
# important: there is preprocessing that must be applied.
# The following two methods are equivalent:
# - Directly load from the filepath:
# preprocessed_wav = encoder.preprocess_wav(in_fpath)
# - If the wav is already loaded:
# get duration info from input audio
message2 = "Reference voice: enter an audio folder of a voice to be cloned (mp3, " \
f"wav, m4a, flac, ...):({i+1}/{num_of_input_audio})\n"
in_fpath = Path(input(message2).replace("\"", "").replace("\'", ""))
fpath_without_ext = os.path.splitext(str(in_fpath))[0]
speaker_name = os.path.normpath(fpath_without_ext).split(os.sep)[-1]
is_wav_file, single_wav, wav_path = TransFormat(in_fpath, 'wav')
if not is_wav_file:
os.remove(wav_path) # remove intermediate wav files
# merge
if i == 0:
wav = single_wav
else:
wav = np.append(wav, single_wav)
# write to disk
path_ori, _ = os.path.split(wav_path)
file_ori = 'temp.wav'
fpath = os.path.join(path_ori, file_ori)
sf.write(fpath, wav, samplerate=encoder.params_data.sampling_rate)
# adjust the speed
totDur_ori, nPause_ori, arDur_ori, nSyl_ori, arRate_ori = AudioAnalysis(path_ori, file_ori)
DelFile(path_ori, '.TextGrid')
os.remove(fpath)
preprocessed_wav = encoder.inference.preprocess_wav(wav)
print("Loaded input audio file succesfully")
# Then we derive the embedding. There are many functions and parameters that the
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
# only use this function (with its default parameters):
input_embed = encoder.inference.embed_utterance(preprocessed_wav)
# Choose standard audio
fft_max_freq = vocoder.get_dominant_freq(preprocessed_wav)
print(f"\nthe dominant frequency of input audio is {fft_max_freq}Hz")
if fft_max_freq < encoder.params_data.split_freq:
vocoder.hp.sex = 1
standard_fpath = "standard_audios/male_1.wav"
else:
vocoder.hp.sex = 0
standard_fpath = "standard_audios/female_1.wav"
if os.path.exists(standard_fpath):
standard_wav = Synthesizer_infer.load_preprocess_wav(standard_fpath)
preprocessed_standard_wav = encoder.inference.preprocess_wav(standard_wav)
print("Loaded standard audio file successfully")
standard_embed = encoder.inference.embed_utterance(preprocessed_standard_wav)
embed1=np.copy(input_embed).dot(weight)
embed2=np.copy(standard_embed).dot(1 - weight)
embed=embed1+embed2
else:
embed = np.copy(input_embed)
embed[embed < encoder.params_data.set_zero_thres]=0 # 噪声值置零
embed = embed * amp
start_syn = time.time()
# Generating the spectrogram
text = input("Write a sentence to be synthesized:\n")
# If seed is specified, reset torch seed and force synthesizer reload
if args.seed is not None:
torch.manual_seed(args.seed)
synthesizer = Synthesizer_infer(args.syn_model_fpath)
# The synthesizer works in batch, so you need to put your data in a list or numpy array
def preprocess_text(text):
text = add_breaks(text)
text = english_cleaners_predict(text)
texts = [i.text.strip() for i in nlp(text).sents] # split paragraph to sentences
return texts
texts = preprocess_text(text)
print(f"the list of inputs texts:\n{texts}")
# embeds = [embed] * len(texts)
specs = []
alignments = []
stop_tokens = []
for text in texts:
spec, align, stop_token = synthesizer.synthesize_spectrograms([text], [embed], require_visualization=True)
specs.append(spec[0])
alignments.append(align[0])
stop_tokens.append(stop_token[0])
breaks = [spec.shape[1] for spec in specs]
spec = np.concatenate(specs, axis=1)
## Save synthesizer visualization results
if not os.path.exists("syn_results"):
os.mkdir("syn_results")
save_attention_multiple(alignments, "syn_results/attention")
save_stop_tokens(stop_tokens, "syn_results/stop_tokens")
save_spectrogram(spec, "syn_results/mel")
print("Created the mel spectrogram")
end_syn = time.time()
print(f"Prediction time of synthesizer is {end_syn - start_syn}s")
start_voc = time.time()
## Generating the waveform
print("Synthesizing the waveform:")
# If seed is specified, reset torch seed and reload vocoder
if args.seed is not None:
torch.manual_seed(args.seed)
vocoder.load_model(args.voc_model_fpath)
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
# spectrogram, the more time-efficient the vocoder.
if not args.griffin_lim:
wav = vocoder.infer_waveform(spec, target=vocoder.hp.voc_target, overlap=vocoder.hp.voc_overlap, crossfade=vocoder.hp.is_crossfade)
else:
wav = Synthesizer_infer.griffin_lim(spec)
end_voc = time.time()
print(f"Prediction time of vocoder is {end_voc - start_voc}s")
print(f"Prediction time of TTS is {end_voc - start_syn}s")
# Add breaks
b_ends = np.cumsum(np.array(breaks) * Synthesizer_infer.hparams.hop_size)
b_starts = np.concatenate(([0], b_ends[:-1]))
wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
breaks = [np.zeros(int(0.15 * Synthesizer_infer.sample_rate))] * len(breaks)
wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
# generated_wav = encoder.inference.preprocess_wav(wav)
wav = wav / np.abs(wav).max() * 4
# Save it on the disk
# filename = "demo_output_%02d.wav" % num_generated
if not os.path.exists("out_audios"):
os.mkdir("out_audios")
dir_path = os.path.dirname(os.path.realpath(__file__)) # current dir
filename = os.path.join(dir_path, f"out_audios/{speaker_name}_syn.wav")
# print(wav.dtype)
sf.write(filename, wav.astype(np.float32), synthesizer.sample_rate)
num_generated += 1
print("\nSaved output (havent't change speed) as %s\n\n" % filename)
# Fix Speed(generate new audio)
fix_file = work(totDur_ori,
nPause_ori,
arDur_ori,
nSyl_ori,
arRate_ori,
filename)
print(f"\nSaved output (fixed speed) as {fix_file}\n\n")
# # Play the audio (non-blocking)
# if not args.no_sound:
# import sounddevice as sd
# try:
# sd.stop()
# sd.play(wav, synthesizer.sample_rate)
# except sd.PortAudioError as e:
# print("\nCaught exception: %s" % repr(e))
# print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
# except:
# raise
# except Exception as e:
# print("Caught exception: %s" % repr(e))
# print("Restarting\n")
|