File size: 4,891 Bytes
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436ce71
6bc94ac
 
 
 
 
 
 
 
 
 
 
d2b6583
6bc94ac
436ce71
6bc94ac
 
 
 
436ce71
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436ce71
6bc94ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15303cb
6bc94ac
 
 
436ce71
 
6bc94ac
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
from ctypes import alignment
import os 
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import sys
sys.path.append('rtvc/')
from pathlib import Path
import time
import spacy
import matplotlib.pyplot as plt

import librosa
import numpy as np
import soundfile as sf
import torch
import noisereduce as nr  
import io
from scipy.io.wavfile import write
import base64


from rtvc.encoder import inference as encoder
from rtvc.encoder.params_data import *
from rtvc.encoder.params_model import model_embedding_size as speaker_embedding_size
from rtvc.synthesizer.inference import Synthesizer_infer
from rtvc.utils.argutils import print_args
from rtvc.utils.default_models import ensure_default_models
from rtvc.vocoder import inference as vocoder
from rtvc.vocoder.display import save_attention_multiple, save_spectrogram, save_stop_tokens
from rtvc.synthesizer.utils.cleaners import english_cleaners_predict
from rtvc.speed_changer.fixSpeed import *


def tts(text, embed_name, nlp, autoplay=True):
    run_id = "default"
    models_dir = Path("rtvc/saved_models")
    embed_path = f"embeds/{embed_name}.npy"
    if torch.cuda.is_available():
        device_id = torch.cuda.current_device()
        gpu_properties = torch.cuda.get_device_properties(device_id)

    ensure_default_models(run_id, models_dir)
    synthesizer = Synthesizer_infer(list(models_dir.glob(f"{run_id}/synthesizer.pt"))[0])
    # vocoder.load_model(list(models_dir.glob(f"{run_id}/vocoder.pt"))[0])
    ## Generating the spectrogram

    # The synthesizer works in batch, so you need to put your data in a list or numpy array
    def split_text(text):
        text = english_cleaners_predict(text)
        texts = [i.text.strip() for i in nlp(text).sents]  # split paragraph to sentences
        return texts

    texts = split_text(text)
    print(f"the list of inputs texts:\n{texts}")

    embed = np.load(embed_path)
    specs = []
    alignments = []
    stop_tokens = []

    for text in texts:
        spec, align, stop_token = synthesizer.synthesize_spectrograms([text], [embed], require_visualization=True)
        specs.append(spec[0])
        alignments.append(align[0])
        stop_tokens.append(stop_token[0])

    breaks = [spec.shape[1] for spec in specs]
    spec = np.concatenate(specs, axis=1)

    ## Save synthesizer visualization results
    if not os.path.exists("syn_results"):
        os.mkdir("syn_results")
    save_attention_multiple(alignments, "syn_results/attention")
    save_stop_tokens(stop_tokens, "syn_results/stop_tokens")
    save_spectrogram(spec, "syn_results/mel")
    print("Created the mel spectrogram")


    ## Generating the waveform
    print("Synthesizing the waveform:")

    # Synthesizing the waveform is fairly straightforward. Remember that the longer the
    # spectrogram, the more time-efficient the vocoder.
    wav = synthesizer.griffin_lim(spec)
    wav = vocoder.waveform_denoising(wav)

    # Add breaks
    b_ends = np.cumsum(np.array(breaks) * Synthesizer_infer.hparams.hop_size)
    b_starts = np.concatenate(([0], b_ends[:-1]))
    wavs = [wav[start:end] for start, end, in zip(b_starts, b_ends)]
    breaks = [np.zeros(int(0.15 * Synthesizer_infer.sample_rate))] * len(breaks)
    wav = np.concatenate([i for w, b in zip(wavs, breaks) for i in (w, b)])

    # Trim excess silences to compensate for gaps in spectrograms (issue #53)
    # generated_wav = encoder.preprocess_wav(generated_wav)
    wav = wav / np.abs(wav).max() * 1

    if autoplay:
        # Play the audio (non-blocking)
        import sounddevice as sd
        try:
            sd.stop()
            sd.play(wav, synthesizer.sample_rate)
            time_span = len(wav)//synthesizer.sample_rate + 1
            time.sleep(time_span)

        except sd.PortAudioError as e:
            print("\nCaught exception: %s" % repr(e))
            print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
        except:
            raise
    return wav, synthesizer.sample_rate
    

if __name__ == "__main__":
    text = "Adkins was raised by a young single mother in various working-class neighbourhoods of London. As a child, she enjoyed singing contemporary pop music and learned to play the guitar and the clarinet. However, it was not until her early teens, when she discovered rhythm-and-blues singer Etta James and other mid-20th-century performers, that she began to consider a musical career. While she honed her talents at a government-funded secondary school for the performing arts, a friend began posting songs Adkins had written and recorded onto the social networking Web site Myspace. Her music eventually caught the attention of record labels, and in 2006, several months after graduating, she signed a contract with XL Recordings."
    embed_name = "Adele"
    nlp = spacy.load('en_core_web_sm')
    tts(text, embed_name, nlp)