Spaces:
Runtime error
Runtime error
File size: 5,341 Bytes
a9c8347 e713918 a9c8347 e713918 a9c8347 a826f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
##
# 获取全部环境变量
env_vars = os.environ
# 遍历并打印环境变量
for key, value in env_vars.items():
print(f"{key}: {value}")
##
import subprocess
import json
# 运行nvidia-smi命令并以JSON格式获取输出
result = subprocess.run(
['nvidia-smi', '--query-gpu=index,name,memory.total,memory.used,memory.free,utilization.gpu,temperature.gpu',
'--format=csv,noheader,nounits', '--json'],
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True
)
# 解析输出
if result.stdout:
gpu_info_json = result.stdout
# 将JSON字符串转换成Python字典
gpu_info = json.loads(gpu_info_json)
# 打印全部GPU信息
print(json.dumps(gpu_info, indent=4))
else:
print("Error:", result.stderr)
##
import GPUtil
# 获取所有可用的GPU列表
gpus = GPUtil.getGPUs()
# 遍历列表,打印每个GPU的详细信息
for gpu in gpus:
print(f"GPU ID: {gpu.id}, Name: {gpu.name}")
print(f" Total Memory: {gpu.memoryTotal}MB")
print(f" Used Memory: {gpu.memoryUsed}MB")
print(f" Free Memory: {gpu.memoryFree}MB")
print(f" GPU Utilization: {gpu.load*100}%")
print(f" GPU Temperature: {gpu.temperature}C\n")
import spaces
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
from modelscope import AutoModelForCausalLM, AutoTokenizer
from transformers import TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "qwen/Qwen1.5-1.8B-Chat"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False,add_generation_prompt=True)
input_ids = tokenizer([input_ids],return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids.input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
#dictionary update sequence element #0 has length 19; 2 is required
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
#outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(outputs)
#yield outputs
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["你好!你是谁?"],
["请简单介绍一下大语言模型?"],
["请讲一个小人物成功的故事."],
["浙江的省会在哪里?"],
["写一篇100字的文章,题目是'人工智能开源的优势'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown("""<p align="center"><img src="https://modelscope.cn/api/v1/models/qwen/Qwen-VL-Chat/repo?Revision=master&FilePath=assets/logo.jpg&View=true" style="height: 80px"/><p>""")
gr.Markdown("""<center><font size=8>Qwen1.5-1.8B-Chat Bot👾</center>""")
gr.Markdown("""<center><font size=4>通义千问1.5-1.8B(Qwen1.5-1.8B) 是阿里云研发的通义千问大模型系列的70亿参数规模的模型。</center>""")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch() |