File size: 8,295 Bytes
d485dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import argparse
import json
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
# import torch_optimizer as optim
import transformers
from sklearn.metrics import (
accuracy_score,
classification_report,
f1_score,
precision_score,
recall_score,
)
from torch.optim.lr_scheduler import (
CosineAnnealingLR,
CosineAnnealingWarmRestarts,
ExponentialLR,
)
from torch.utils.data import DataLoader, Dataset
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from models import AudioClassifier, extract_features
from losses import AsymmetricLoss, ASLSingleLabel
torch.manual_seed(42)
label2id = {
"usual": 0,
"aegi": 1,
"chupa": 2,
# "cry": 3,
# "laugh": 4,
# "silent": 5,
# "unusual": 6,
}
id2label = {v: k for k, v in label2id.items()}
parser = argparse.ArgumentParser()
parser.add_argument("--exp_dir", type=str, default="data")
parser.add_argument("--ckpt_dir", type=str, required=True)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--epochs", type=int, default=1000)
parser.add_argument("--save_every", type=int, default=100)
args = parser.parse_args()
device = args.device
if not torch.cuda.is_available():
print("No GPU detected. Using CPU.")
device = "cpu"
print(f"Using {device} for training.")
# データセットの定義
class AudioDataset(Dataset):
def __init__(self, file_paths, labels, features):
self.file_paths = file_paths
self.labels = labels
self.features = features
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
return self.features[idx], self.labels[idx]
def prepare_dataset(directory):
file_paths = list(Path(directory).rglob("*.npy"))
if len(file_paths) == 0:
return [], [], []
# file_paths = [f for f in file_paths if f.parent.name in label2id]
def process(file_path: Path):
npy_feature = np.load(file_path)
id = int(label2id[file_path.parent.name])
return (
file_path,
torch.tensor(id, dtype=torch.long).to(device),
torch.tensor(npy_feature, dtype=torch.float32).to(device),
)
with ThreadPoolExecutor(max_workers=10) as executor:
results = list(tqdm(executor.map(process, file_paths), total=len(file_paths)))
file_paths, labels, features = zip(*results)
return file_paths, labels, features
print("Preparing dataset...")
exp_dir = Path(args.exp_dir)
train_file_paths, train_labels, train_feats = prepare_dataset(exp_dir / "train")
val_file_paths, val_labels, val_feats = prepare_dataset(exp_dir / "val")
print(f"Train: {len(train_file_paths)}, Val: {len(val_file_paths)}")
# データセットとデータローダーの準備
train_dataset = AudioDataset(train_file_paths, train_labels, train_feats)
print("Train dataset prepared.")
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
print("Train loader prepared.")
if len(val_file_paths) == 0:
val_dataset = None
val_loader = None
print("No validation dataset found.")
else:
val_dataset = AudioDataset(val_file_paths, val_labels, val_feats)
print("Val dataset prepared.")
val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False)
print("Val loader prepared.")
# モデル、損失関数、最適化アルゴリズムの設定
config = {
"model": {
"label2id": label2id,
"num_hidden_layers": 2,
"hidden_dim": 128,
},
"lr": 1e-3,
"lr_decay": 0.996,
}
model = AudioClassifier(device="cuda", **config["model"]).to(device)
model.to(device)
# criterion = nn.CrossEntropyLoss()
criterion = ASLSingleLabel(gamma_pos=1, gamma_neg=4)
optimizer = optim.AdamW(model.parameters(), lr=config["lr"], weight_decay=1e-2)
scheduler = ExponentialLR(optimizer, gamma=config["lr_decay"])
# scheduler = transformers.optimization.AdafactorSchedule(optimizer)
num_epochs = args.epochs
# scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=2)
print("Start training...")
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
ckpt_dir = Path(args.ckpt_dir) / current_time
ckpt_dir.mkdir(parents=True, exist_ok=True)
# Save config
with open(ckpt_dir / "config.json", "w", encoding="utf-8") as f:
json.dump(config, f, indent=4)
# 訓練ループ
save_every = args.save_every
val_interval = 1
eval_interval = 1
writer = SummaryWriter(ckpt_dir / "logs")
for epoch in tqdm(range(1, num_epochs + 1)):
train_loss = 0.0
model.train() # 訓練モードに設定
train_labels = []
train_preds = []
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
# 順伝播、損失の計算、逆伝播、パラメータ更新
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(), labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
# 評価指標の計算
if epoch % eval_interval == 0:
with torch.no_grad():
# 最も高い確率を持つクラスのインデックスを取得
_, predictions = torch.max(outputs, 1)
# 実際のラベルと予測値をリストに追加
train_labels.extend(labels.cpu().numpy())
train_preds.extend(predictions.cpu().numpy())
scheduler.step()
if epoch % eval_interval == 0:
# 訓練データに対する評価指標の計算
accuracy = accuracy_score(train_labels, train_preds)
precision = precision_score(train_labels, train_preds, average="macro")
recall = recall_score(train_labels, train_preds, average="macro")
f1 = f1_score(train_labels, train_preds, average="macro")
report = classification_report(
train_labels, train_preds, target_names=list(label2id.keys())
)
writer.add_scalar("train/Accuracy", accuracy, epoch)
writer.add_scalar("train/Precision", precision, epoch)
writer.add_scalar("train/Recall", recall, epoch)
writer.add_scalar("train/F1", f1, epoch)
writer.add_scalar("Loss/train", train_loss / len(train_loader), epoch)
writer.add_scalar("Learning Rate", optimizer.param_groups[0]["lr"], epoch)
if epoch % save_every == 0:
torch.save(model.state_dict(), ckpt_dir / f"model_{epoch}.pth")
if epoch % val_interval != 0 or val_loader is None:
tqdm.write(f"loss: {train_loss / len(train_loader):4f}\n{report}")
continue
model.eval() # 評価モードに設定
val_labels = []
val_preds = []
val_loss = 0.0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
# 最も高い確率を持つクラスのインデックスを取得
_, predictions = torch.max(outputs, 1)
val_labels.extend(labels.cpu().numpy())
val_preds.extend(predictions.cpu().numpy())
loss = criterion(outputs.squeeze(), labels)
val_loss += loss.item()
# 評価指標の計算
accuracy = accuracy_score(val_labels, val_preds)
precision = precision_score(val_labels, val_preds, average="macro")
recall = recall_score(val_labels, val_preds, average="macro")
f1 = f1_score(val_labels, val_preds, average="macro")
report = classification_report(
val_labels, val_preds, target_names=list(label2id.keys())
)
writer.add_scalar("Loss/val", val_loss / len(val_loader), epoch)
writer.add_scalar("val/Accuracy", accuracy, epoch)
writer.add_scalar("val/Precision", precision, epoch)
writer.add_scalar("val/Recall", recall, epoch)
writer.add_scalar("val/F1", f1, epoch)
tqdm.write(
f"loss: {train_loss / len(train_loader):4f}, val loss: {val_loss / len(val_loader):4f}, "
f"acc: {accuracy:4f}, f1: {f1:4f}, prec: {precision:4f}, recall: {recall:4f}\n{report}"
)
# tqdm.write(report)
# Save
torch.save(model.state_dict(), ckpt_dir / "model_final.pth")
|