Spaces:
Running
Running
File size: 35,865 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
import os
import sys
sys.path.append('./Musetalk')
import os
import time
import re
from huggingface_hub import snapshot_download
import requests
import numpy as np
import cv2
import torch
import glob
import pickle
from tqdm import tqdm
import copy
from argparse import Namespace
import gdown
import imageio
import json
import shutil
import threading
import queue
from moviepy.editor import *
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
from musetalk.utils.utils import load_all_model
import gradio as gr
# ProjectDir = os.path.abspath(os.path.dirname(__file__))
CheckpointsDir = "Musetalk/Musetalk/models"
def download_model():
if not os.path.exists(CheckpointsDir):
os.makedirs(CheckpointsDir)
print("Checkpoint Not Downloaded, start downloading...")
tic = time.time()
snapshot_download(
repo_id="TMElyralab/MuseTalk",
local_dir=CheckpointsDir,
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
# weight
os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/")
snapshot_download(
repo_id="stabilityai/sd-vae-ft-mse",
local_dir=CheckpointsDir+'/sd-vae-ft-mse',
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
#dwpose
os.makedirs(f"{CheckpointsDir}/dwpose/")
snapshot_download(
repo_id="yzd-v/DWPose",
local_dir=CheckpointsDir+'/dwpose',
max_workers=8,
local_dir_use_symlinks=True,
force_download=True, resume_download=False
)
#vae
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 指定文件保存的位置
file_path = f"{CheckpointsDir}/whisper/tiny.pt"
os.makedirs(f"{CheckpointsDir}/whisper/")
# 将文件内容写入指定位置
with open(file_path, "wb") as f:
f.write(response.content)
else:
print(f"请求失败,状态码:{response.status_code}")
#gdown face parse
url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812"
os.makedirs(f"{CheckpointsDir}/face-parse-bisent/")
file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth"
gdown.download(url, file_path, quiet=False)
#resnet
url = "https://download.pytorch.org/models/resnet18-5c106cde.pth"
response = requests.get(url)
# 确保请求成功
if response.status_code == 200:
# 指定文件保存的位置
file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth"
# 将文件内容写入指定位置
with open(file_path, "wb") as f:
f.write(response.content)
else:
print(f"请求失败,状态码:{response.status_code}")
toc = time.time()
print(f"download cost {toc-tic} seconds")
print_directory_contents(CheckpointsDir)
else:
print("Already download the model.")
# download_model() # for huggingface deployment.
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
class MuseTalk_RealTime:
def __init__(self):
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
self.device = device
self.load = False
# self.avatar_info = {
# "avatar_id":avatar_id,
# "video_path":video_path,
# "bbox_shift":bbox_shift
# }
self.skip_save_images = False
self.avatar_id = None
self.avatar_path = None
self.full_imgs_path = None
self.coords_path = None
self.latents_out_path = None
self.video_out_path = None
self.mask_out_path = None
self.mask_coords_path = None
self.avatar_info_path = None
self.input_latent_list_cycle = None
self.mask_coords_list_cycle = None
self.mask_list_cycle = None
self.frame_list_cycle = None
def init_model(self):
# load model weights
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
self.timesteps = torch.tensor([0], device=self.device)
self.pe = self.pe.half()
self.vae.vae = self.vae.vae.half()
self.unet.model = self.unet.model.half()
self.load = True
def process_frames(self,
res_frame_queue,
video_len):
print(video_len)
while True:
if self.idx>=video_len-1:
break
try:
start = time.time()
res_frame = res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
continue
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))]
#combine_frame = get_image(ori_frame,res_frame,bbox)
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
if self.skip_save_images is False:
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame)
self.idx = self.idx + 1
def prepare_material(self, video_path, bbox_shift, progress=gr.Progress(track_tqdm=True)):
self.video_path = video_path
self.bbox_shift = bbox_shift
self.avatar_id = os.path.basename(video_path).split(".")[0]
self.avatar_path = f"./results/avatars/{self.avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path= f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path =f"{self.avatar_path}/mask"
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
# 若存在先删除
if os.path.exists(self.full_imgs_path):
shutil.rmtree(self.full_imgs_path)
shutil.rmtree(self.mask_out_path)
shutil.rmtree(self.video_out_path)
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
print("preparing data materials ... ...")
progress(0, desc = "preparing data materials ...")
if os.path.isfile(video_path):
video2imgs(video_path, self.full_imgs_path, ext = 'png')
else:
print(f"copy files in {video_path}")
files = os.listdir(video_path)
files.sort()
files = [file for file in files if file.split(".")[-1]=="png"]
for filename in files:
shutil.copyfile(f"{video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
# bbox_shift_text = get_bbox_range(input_img_list, self.bbox_shift)
progress(0, desc = "extracting landmarks...")
print("extracting landmarks ...")
coord_list, frame_list, bbox_shift_text = get_landmark_and_bbox(input_img_list, bbox_shift)
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0,0.0,0.0,0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
latents = self.vae.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
self.frame_list_cycle = frame_list + frame_list[::-1]
self.coord_list_cycle = coord_list + coord_list[::-1]
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
progress(0, desc = "saving masks...")
for i,frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame)
face_box = self.coord_list_cycle[i]
mask,crop_box = get_image_prepare_material(frame,face_box)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, 'wb') as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, 'wb') as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
return video_path, bbox_shift_text
def prepare_material_(self):
print("preparing data materials ... ...")
# with open(self.avatar_info_path, "w") as f:
# json.dump(self.avatar_info, f)
if os.path.isfile(self.video_path):
video2imgs(self.video_path, self.full_imgs_path, ext = 'png')
else:
print(f"copy files in {self.video_path}")
files = os.listdir(self.video_path)
files.sort()
files = [file for file in files if file.split(".")[-1]=="png"]
for filename in files:
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
bbox_shift_text = get_bbox_range(input_img_list, self.bbox_shift)
print("extracting landmarks...")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0,0.0,0.0,0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
latents = self.vae.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
self.frame_list_cycle = frame_list + frame_list[::-1]
self.coord_list_cycle = coord_list + coord_list[::-1]
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
for i,frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame)
face_box = self.coord_list_cycle[i]
mask,crop_box = get_image_prepare_material(frame,face_box)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, 'wb') as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, 'wb') as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
return bbox_shift_text
def inference_noprepare(self, audio_path,
source_video, bbox_shift,
batch_size = 4,
fps = 25,
progress = gr.Progress(track_tqdm=True)):
out_vid_name = "res"
os.makedirs(self.avatar_path+'/tmp',exist_ok =True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
whisper_feature = self.audio_processor.audio2feat(audio_path)
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# # Create a sub-thread and start it
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num))
process_thread.start()
gen = datagen(whisper_chunks,
self.input_latent_list_cycle,
batch_size)
start_time = time.time()
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
audio_feature_batch = torch.from_numpy(whisper_batch)
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
dtype=self.unet.model.dtype)
audio_feature_batch = self.pe(audio_feature_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(latent_batch,
self.timesteps,
encoder_hidden_states=audio_feature_batch).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
if self.skip_save_images is True:
print('Total process time of {} frames without saving images = {}s'.format(
video_num,
time.time()-start_time))
else:
print('Total process time of {} frames including saving images = {}s'.format(
video_num,
time.time()-start_time))
if out_vid_name is not None and self.skip_save_images is False:
# optional
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
os.remove(f"{self.avatar_path}/temp.mp4")
shutil.rmtree(f"{self.avatar_path}/tmp")
print(f"result is save to {output_vid}")
print("\n")
return output_vid
def inference(self, audio_path,
source_video, bbox_shift,
batch_size = 4,
fps = 25,
progress = gr.Progress(track_tqdm=True)):
self.video_path = source_video
self.bbox_shift = bbox_shift
self.avatar_id = os.path.basename(source_video).split(".")[0]
self.avatar_path = f"./results/avatars/{self.avatar_id}"
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path= f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path =f"{self.avatar_path}/mask"
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
bbox_shift_text = None
if os.path.exists(self.avatar_path):
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
if response.lower() == "y":
shutil.rmtree(self.avatar_path)
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
bbox_shift_text = self.prepare_material_()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
else:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
bbox_shift_text = self.prepare_material_()
if self.input_latent_list_cycle is None:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
if self.mask_list_cycle is None:
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
if self.frame_list_cycle is None:
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
if self.mask_coords_list_cycle is None:
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
if self.mask_list_cycle is None:
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
if bbox_shift_text is None:
bbox_shift_text = get_bbox_range(input_img_list, bbox_shift)
out_vid_name = "res"
os.makedirs(self.avatar_path+'/tmp',exist_ok =True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
whisper_feature = self.audio_processor.audio2feat(audio_path)
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# # Create a sub-thread and start it
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num))
process_thread.start()
gen = datagen(whisper_chunks,
self.input_latent_list_cycle,
batch_size)
start_time = time.time()
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
audio_feature_batch = torch.from_numpy(whisper_batch)
audio_feature_batch = audio_feature_batch.to(device=self.unet.device,
dtype=self.unet.model.dtype)
audio_feature_batch = self.pe(audio_feature_batch)
latent_batch = latent_batch.to(dtype=self.unet.model.dtype)
pred_latents = self.unet.model(latent_batch,
self.timesteps,
encoder_hidden_states=audio_feature_batch).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
if self.skip_save_images is True:
print('Total process time of {} frames without saving images = {}s'.format(
video_num,
time.time()-start_time))
else:
print('Total process time of {} frames including saving images = {}s'.format(
video_num,
time.time()-start_time))
if out_vid_name is not None and self.skip_save_images is False:
# optional
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
os.remove(f"{self.avatar_path}/temp.mp4")
shutil.rmtree(f"{self.avatar_path}/tmp")
print(f"result is save to {output_vid}")
print("\n")
return output_vid, bbox_shift_text
class MuseTalk:
def __init__(self):
# load model weights
self.audio_processor, self.vae, self.unet, self.pe = load_all_model()
import platform
if torch.cuda.is_available():
device = "cuda"
elif platform.system() == 'Darwin': # macos
device = "mps"
else:
device = "cpu"
self.timesteps = torch.tensor([0], device=device)
@torch.no_grad()
def inference(self, audio_path, video_path, bbox_shift):
args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script
args = Namespace(**args_dict)
print(args)
input_basename = os.path.basename(video_path).split('.')[0]
audio_basename = os.path.basename(audio_path).split('.')[0]
output_basename = f"{input_basename}_{audio_basename}"
result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input
os.makedirs(result_img_save_path,exist_ok =True)
if args.output_vid_name=="":
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4")
else:
output_vid_name = os.path.join(args.result_dir, args.output_vid_name)
############################################## extract frames from source video ##############################################
if get_file_type(video_path)=="video":
save_dir_full = os.path.join(args.result_dir, input_basename)
os.makedirs(save_dir_full,exist_ok = True)
# cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
# os.system(cmd)
# 读取视频
reader = imageio.get_reader(video_path)
# 保存图片
for i, im in enumerate(reader):
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im)
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
fps = get_video_fps(video_path)
else: # input img folder
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
fps = args.fps
#print(input_img_list)
############################################## extract audio feature ##############################################
whisper_feature = self.audio_processor.audio2feat(audio_path)
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
############################################## preprocess input image ##############################################
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
print("using extracted coordinates")
with open(crop_coord_save_path,'rb') as f:
coord_list = pickle.load(f)
frame_list = read_imgs(input_img_list)
else:
print("extracting landmarks...time consuming")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
with open(crop_coord_save_path, 'wb') as f:
pickle.dump(coord_list, f)
bbox_shift_text=get_bbox_range(input_img_list, bbox_shift)
i = 0
input_latent_list = []
for bbox, frame in zip(coord_list, frame_list):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
crop_frame = frame[y1:y2, x1:x2]
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
latents = self.vae.get_latents_for_unet(crop_frame)
input_latent_list.append(latents)
# to smooth the first and the last frame
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
############################################## inference batch by batch ##############################################
print("start inference")
video_num = len(whisper_chunks)
batch_size = args.batch_size
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size)
res_frame_list = []
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
audio_feature_batch = torch.stack(tensor_list).to(self.unet.device) # torch, B, 5*N,384
audio_feature_batch = self.pe(audio_feature_batch)
pred_latents = self.unet.model(latent_batch, self.timesteps, encoder_hidden_states=audio_feature_batch).sample
recon = self.vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
############################################## pad to full image ##############################################
print("pad talking image to original video")
for i, res_frame in enumerate(tqdm(res_frame_list)):
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
except:
# print(bbox)
continue
combine_frame = get_image(ori_frame,res_frame,bbox)
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
# cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p temp.mp4"
# print(cmd_img2video)
# os.system(cmd_img2video)
# 帧率
fps = 25
# 图片路径
# 输出视频路径
output_video = 'temp.mp4'
# 读取图片
def is_valid_image(file):
pattern = re.compile(r'\d{8}\.png')
return pattern.match(file)
images = []
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)]
files.sort(key=lambda x: int(x.split('.')[0]))
for file in files:
filename = os.path.join(result_img_save_path, file)
images.append(imageio.imread(filename))
# 保存视频
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p')
# cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}"
# print(cmd_combine_audio)
# os.system(cmd_combine_audio)
input_video = './temp.mp4'
# Check if the input_video and audio_path exist
if not os.path.exists(input_video):
raise FileNotFoundError(f"Input video file not found: {input_video}")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# 读取视频
reader = imageio.get_reader(input_video)
fps = reader.get_meta_data()['fps'] # 获取原视频的帧率
# 将帧存储在列表中
frames = images
# 保存视频并添加音频
# imageio.mimwrite(output_vid_name, frames, 'FFMPEG', fps=fps, codec='libx264', audio_codec='aac', input_params=['-i', audio_path])
# input_video = ffmpeg.input(input_video)
# input_audio = ffmpeg.input(audio_path)
print(len(frames))
# imageio.mimwrite(
# output_video,
# frames,
# 'FFMPEG',
# fps=25,
# codec='libx264',
# audio_codec='aac',
# input_params=['-i', audio_path],
# output_params=['-y'], # Add the '-y' flag to overwrite the output file if it exists
# )
# writer = imageio.get_writer(output_vid_name, fps = 25, codec='libx264', quality=10, pixelformat='yuvj444p')
# for im in frames:
# writer.append_data(im)
# writer.close()
# Load the video
video_clip = VideoFileClip(input_video)
# Load the audio
audio_clip = AudioFileClip(audio_path)
# Set the audio to the video
video_clip = video_clip.set_audio(audio_clip)
# Write the output video
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25)
os.remove("temp.mp4")
#shutil.rmtree(result_img_save_path)
print(f"result is save to {output_vid_name}", bbox_shift_text)
return output_vid_name, bbox_shift_text
def check_video(self, video):
if not isinstance(video, str):
return video # in case of none type
# Define the output video file name
dir_path, file_name = os.path.split(video)
if file_name.startswith("outputxxx_"):
return video
# Add the output prefix to the file name
output_file_name = "outputxxx_" + file_name
os.makedirs('./results',exist_ok=True)
os.makedirs('./results/output',exist_ok=True)
os.makedirs('./results/input',exist_ok=True)
# Combine the directory path and the new file name
output_video = os.path.join('./results/input', output_file_name)
# # Run the ffmpeg command to change the frame rate to 25fps
# command = f"ffmpeg -i {video} -r 25 -vcodec libx264 -vtag hvc1 -pix_fmt yuv420p crf 18 {output_video} -y"
# read video
reader = imageio.get_reader(video)
fps = reader.get_meta_data()['fps'] # get fps from original video
# conver fps to 25
frames = [im for im in reader]
target_fps = 25
L = len(frames)
L_target = int(L / fps * target_fps)
original_t = [x / fps for x in range(1, L+1)]
t_idx = 0
target_frames = []
for target_t in tqdm(range(1, L_target+1)):
while target_t / target_fps > original_t[t_idx]:
t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx]
if t_idx >= L:
break
target_frames.append(frames[t_idx])
# save video
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p')
return output_video
if __name__ == "__main__":
# musetalk = MuseTalk()
musetalk = MuseTalk_RealTime()
audio_path = "Musetalk/data/audio/sun.wav"
video_path = "Musetalk/data/video/yongen_musev.mp4"
bbox_shift = 5
video_path, bbox_shift_text = musetalk.prepare_material(video_path, bbox_shift)
# print(video_path, bbox_shift_text)
print("Inference Params:", audio_path, video_path, bbox_shift)
res_video = musetalk.inference_noprepare(audio_path, video_path, bbox_shift)
# output_video = musetalk.check_video(video_path)
# print("output_video:", output_video)
# res_video, bbox_shift_scale = musetalk.inference(audio_path, video_path, bbox_shift)
# print(bbox_shift_scale)
|