Spaces:
Sleeping
Sleeping
File size: 8,325 Bytes
9e62d8e 40ba0ea 9f5d69c 9e62d8e 4a9e46f babcd78 9e62d8e 40ba0ea 9e62d8e 40ba0ea 30421b7 4a9e46f 4a28ca5 9e62d8e 77b5a47 4a28ca5 9e62d8e 4a9e46f 30421b7 4a28ca5 4a9e46f 77b5a47 4a28ca5 9e62d8e 4a28ca5 30421b7 395e196 30421b7 dc3b7a9 3b00a19 77b5a47 3b00a19 4a9e46f 3b00a19 3965e1f 4a9e46f 30421b7 3965e1f 9e62d8e 30421b7 9e62d8e 77b5a47 395e196 3b00a19 3965e1f 3b00a19 4a28ca5 9e62d8e 4a28ca5 9e62d8e 30421b7 9e62d8e 4a28ca5 9e62d8e 4a28ca5 9f5d69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import re
from pprint import pprint
from transformers import AutoTokenizer
from constants.models import AVAILABLE_MODELS, MODEL_MAP
from tclogger import logger
class MessageComposer:
def __init__(self, model: str = None):
if model in AVAILABLE_MODELS:
self.model = model
else:
self.model = "mixtral-8x7b"
self.model_fullname = MODEL_MAP[self.model]
self.system_roles = ["system"]
self.inst_roles = ["user", "system", "inst"]
self.answer_roles = ["assistant", "bot", "answer", "model"]
self.default_role = "user"
def concat_messages_by_role(self, messages):
def is_same_role(role1, role2):
if (
(role1 == role2)
or (role1 in self.inst_roles and role2 in self.inst_roles)
or (role1 in self.answer_roles and role2 in self.answer_roles)
):
return True
else:
return False
concat_messages = []
for message in messages:
role = message["role"]
content = message["content"]
if concat_messages and is_same_role(role, concat_messages[-1]["role"]):
concat_messages[-1]["content"] += "\n" + content
else:
if role in self.inst_roles:
message["role"] = "inst"
elif role in self.answer_roles:
message["role"] = "answer"
else:
message["role"] = "inst"
concat_messages.append(message)
return concat_messages
def merge(self, messages) -> str:
# Templates for Chat Models
# - https://huggingface.co/docs/transformers/main/en/chat_templating
# - https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
# - https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
# - https://huggingface.co/openchat/openchat-3.5-0106
# - https://huggingface.co/google/gemma-7b-it#chat-template
# Mistral and Mixtral:
# <s> [INST] Instruction [/INST] Model answer </s> [INST] Follow-up instruction [/INST]
# Nous Mixtral:
# <|im_start|>system
# You are "Hermes 2".<|im_end|>
# <|im_start|>user
# Hello, who are you?<|im_end|>
# <|im_start|>assistant
# OpenChat:
# GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
# Google Gemma-it
# <start_of_turn>user
# How does the brain work?<end_of_turn>
# <start_of_turn>model
self.messages = messages
self.merged_str = ""
# https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
if self.model in ["mixtral-8x7b", "mistral-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.cached_str = ""
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.cached_str = f"[INST] {content} [/INST]"
elif role in self.answer_roles:
self.merged_str += f"<s> {self.cached_str} {content} </s>\n"
self.cached_str = ""
else:
self.cached_str = f"[INST] {content} [/INST]"
if self.cached_str:
self.merged_str += f"{self.cached_str}"
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
elif self.model in ["nous-mixtral-8x7b"]:
self.merged_str_list = []
for message in self.messages:
role = message["role"]
content = message["content"]
if role not in ["system", "user", "assistant"]:
role = self.default_role
message_line = f"<|im_start|>{role}\n{content}<|im_end|>"
self.merged_str_list.append(message_line)
self.merged_str_list.append("<|im_start|>assistant")
self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/openchat/openchat-3.5-0106
elif self.model in ["openchat-3.5"]:
self.messages = self.concat_messages_by_role(messages)
self.merged_str_list = []
self.end_of_turn = "<|end_of_turn|>"
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.merged_str_list.append(
f"GPT4 Correct User:\n{content}{self.end_of_turn}"
)
elif role in self.answer_roles:
self.merged_str_list.append(
f"GPT4 Correct Assistant:\n{content}{self.end_of_turn}"
)
else:
self.merged_str_list.append(
f"GPT4 Correct User: {content}{self.end_of_turn}"
)
self.merged_str_list.append(f"GPT4 Correct Assistant:\n")
self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/google/gemma-1.1-7b-it#chat-template
elif self.model in ["gemma-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.merged_str_list = []
self.end_of_turn = "<end_of_turn>"
self.start_of_turn = "<start_of_turn>"
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
elif role in self.answer_roles:
self.merged_str_list.append(
f"{self.start_of_turn}model\n{content}{self.end_of_turn}"
)
else:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
self.merged_str_list.append(f"{self.start_of_turn}model\n")
self.merged_str = "<bos>" + "\n".join(self.merged_str_list)
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
# https://huggingface.co/openchat/openchat-3.5-0106
# elif self.model in ["openchat-3.5", "nous-mixtral-8x7b"]:
elif self.model in ["openchat-3.5", "command-r-plus", "gemma-7b"]:
tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
self.merged_str = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
else:
self.merged_str = "\n\n".join(
[f"{message['role']}: {message['content']}" for message in messages]
)
return self.merged_str
if __name__ == "__main__":
# model = "mixtral-8x7b"
# model = "nous-mixtral-8x7b"
model = "gemma-7b"
# model = "openchat-3.5"
# model = "command-r-plus"
composer = MessageComposer(model)
messages = [
{
"role": "system",
"content": "You are a LLM developed by OpenAI.\nYour name is GPT-4.",
},
{"role": "user", "content": "Hello, who are you?"},
{"role": "assistant", "content": "I am a bot."},
{"role": "user", "content": "What is your name?"},
# {"role": "assistant", "content": "My name is Bing."},
# {"role": "user", "content": "Tell me a joke."},
# {"role": "assistant", "content": "What is a robot's favorite type of music?"},
# {
# "role": "user",
# "content": "How many questions have I asked? Please list them.",
# },
]
logger.note(f"model: {composer.model}")
merged_str = composer.merge(messages)
logger.note("merged_str:")
logger.mesg(merged_str)
# python -m messagers.message_composer
|