Spaces:
Runtime error
Runtime error
File size: 12,603 Bytes
4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 60274d1 07d2942 4925baf 07d2942 4925baf 948e91c 07d2942 948e91c 07d2942 948e91c 07d2942 948e91c 07d2942 948e91c 4925baf 948e91c 4925baf 07d2942 60274d1 4925baf 948e91c 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 4925baf 07d2942 948e91c 07d2942 60274d1 07d2942 60274d1 07d2942 60274d1 07d2942 4925baf 60274d1 07d2942 4925baf 07d2942 948e91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import sys
import time
import json
import joblib
import math
import itertools
import argparse
import multiprocessing as mp
from typing import List
from pathlib import Path
import yaml
import jinja2
import requests
import pandas as pd
from dotenv import load_dotenv
from serpapi import GoogleSearch
import tiktoken
from openai import OpenAI
from tqdm import tqdm
from loguru import logger
from model import llm
from data import get_leads, format_search_results
from utils import (parse_json_garbage, split_dataframe, merge_results,
combine_results, split_dict, format_df,
clean_quotes, compose_query, reverse_category2supercategory)
from batch import postprocess_result
from pipeline import (get_serp, get_condensed_result, get_organic_result, get_googlemap_results,
crawl_results, crawl_results_mp,
compose_extraction, extract_results, extract_results_mp,
compose_classification, classify_results, classify_results_mp,
compose_regularization, regularize_results, regularize_results_mp,
compose_filter, filter_results, filter_results_mp)
load_dotenv()
ORGANIZATION_ID = os.getenv('OPENAI_ORGANIZATION_ID')
SERP_API_KEY = os.getenv('SERP_APIKEY')
SERPER_API_KEY = os.getenv('SERPER_API_KEY')
def continue_missing(args):
"""
"""
data = get_leads(args.data_path)
n_data = data.shape[0]
formatted_results = pd.read_csv(os.path.join( args.output_dir, args.formatted_results_path))
missing_indices = []
for i in range(n_data):
if i not in formatted_results['index'].unique():
logger.debug(f"{i} is not found")
missing_indices.append(i)
if len(missing_indices)==0:
logger.debug("No missing data")
return
missing_data = data.loc[missing_indices]
if not os.path.exists(args.output_missing_dir):
os.makedirs(args.output_missing_dir)
missing_data.to_csv( args.missing_data_path, index=False, header=False)
args.data_path = args.missing_data_path
args.output_dir = args.output_missing_dir
if missing_data.shape[0]<args.n_processes:
args.n_processes = 1
main(args)
def main(args):
"""
Argument
args: argparse
Note
200 records
crawl: 585.3285548686981
extract: 2791.631685256958(delay = 10)
classify: 2374.4915606975555(delay = 10)
"""
steps = args.steps
crawled_file_path = os.path.join( args.output_dir, args.crawled_file_path) if args.crawled_file_path is not None else None
extracted_file_path = os.path.join( args.output_dir, args.extracted_file_path) if args.extracted_file_path is not None else None
# classified_file_path = os.path.join( args.output_dir, args.classified_file_path)
# combined_file_path = os.path.join( args.output_dir, args.combined_file_path)
postprocessed_file_path = os.path.join( args.output_dir, args.postprocessed_file_path) if args.postprocessed_file_path is not None else None
# formatted_results_path = os.path.join( args.output_dir, args.formatted_results_path)
filtered_file_path = os.path.join( args.output_dir, args.filtered_file_path) if args.filtered_file_path is not None else None
regularized_file_path = os.path.join( args.output_dir, args.regularized_file_path) if args.regularized_file_path is not None else None
## 讀取資料名單 ##
data = get_leads(args.data_path)
## 進行爬蟲與分析 ##
if steps=='all' or steps=='crawl':
Path(crawled_file_path).parent.mkdir(parents=True, exist_ok=True)
crawled_results = crawl_results_mp(
data,
crawled_file_path,
serp_provider=args.serp_provider,
n_processes=args.n_processes
)
else:
sys.exit(0)
# crawled_results = { k:v[-5:] for k,v in crawled_results.items()}
# crawled_results['crawled_results'].to_csv( formatted_results_path, index=False)
## 篩選爬蟲結果 ##
# filtered_results = filter_results_mp(
# data = crawled_results['crawled_results'],
# filtered_file_path = filtered_file_path,
# provider = args.filter_provider,
# model = args.filter_model,
# n_processes = args.n_processes
# )
# sys.exit(0)
## 方法 1: 擷取關鍵資訊與分類 ##
if steps=='all' or steps=='extract':
assert os.path.exists(crawled_file_path), f"# CRAWLED file not found: {crawled_file_path}"
crawled_results = joblib.load( open(crawled_file_path, "rb"))
extracted_results = extract_results_mp(
crawled_results = crawled_results['crawled_results'], # filtered_results['filtered_results'], # crawled_results['crawled_results'],
extracted_file_path = extracted_file_path,
classes = args.classes,
provider = args.extraction_provider, # 'openai', # args.provider,
model = args.extraction_model, # 'gpt-3.5-turbo-0125', # args.model,
n_processes = args.n_processes
)
else:
sys.exit(0)
## 方法2: 直接對爬蟲結果分類 ##
# classified_results = classify_results_mp(
# extracted_results['extracted_results'],
# classified_file_path,
# classes = args.classes,
# backup_classes = args.backup_classes,
# provider = args.provider,
# model = args.model,
# n_processes = args.n_processes
# )
## 合併分析結果 ##
# combined_results = combine_results(
# classified_results['classified_results'],
# combined_file_path,
# src_column = 'classified_category',
# tgt_column = 'category',
# strategy = args.strategy
# )
## 正規化分類結果 ##
if steps=='all' or steps=='regularize':
assert os.path.exists(args.extracted_file_path), f"# extracted result file not found: {args.extracted_file_path}"
extracted_results = joblib.load( open(extracted_file_path, "rb"))
regularize_results = regularize_results_mp(
extracted_results['extracted_results'],
regularized_file_path,
provider = args.regularization_provider, # 'google', # 'openai', # args.provider,
model = args.regularization_model # 'gemini-1.5-flash' # 'gpt-3.5-turbo-0125' # args.model
)
else:
sys.exit(0)
## 後處理分析結果 ##
if steps=='all' or steps=='postprocess':
assert os.path.exists(args.regularized_file_path), f"# extracted result file not found: {args.extracted_file_path}"
regularize_results = joblib.load( open(regularized_file_path, "rb"))
postprossed_results = postprocess_result(
regularize_results['regularized_results'], # extracted_results['extracted_results'], # combined_results,
postprocessed_file_path,
category2supercategory
)
else:
sys.exit(0)
if __name__=='__main__':
base = "https://serpapi.com/search.json"
engine = 'google'
google_domain = 'google.com.tw'
gl = 'tw'
lr = 'lang_zh-TW'
n_processes = 4
client = OpenAI( organization = ORGANIZATION_ID)
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='config/config.yml', help="Path to the configuration file")
parser.add_argument("--data_path", type=str, default="data/餐廳類型分類.xlsx - 測試清單.csv")
parser.add_argument("--missing_data_path", type=str, default="data/missing/missing.csv")
parser.add_argument("--task", type=str, default="new", choices = ["new", "continue"], help="new or continue")
parser.add_argument("--steps", type=str, default="all", choices = ["all", "crawl", "extract", "regularize", "postprocess"], help="new or continue")
parser.add_argument("--output_dir", type=str, help='output directory')
parser.add_argument("--output_missing_dir", type=str, help='output missing directory')
parser.add_argument("--classified_file_path", type=str, default="classified_results.joblib")
parser.add_argument("--extracted_file_path", type=str, default="extracted_results.joblib")
parser.add_argument("--crawled_file_path", type=str, default="crawled_results.joblib")
parser.add_argument("--combined_file_path", type=str, default="combined_results.joblib")
parser.add_argument("--regularized_file_path", type=str, default="regularized_results.joblib")
parser.add_argument("--postprocessed_file_path", type=str, default="postprocessed_results.csv")
parser.add_argument("--formatted_results_path", type=str, default="formatted_results.csv")
parser.add_argument("--filtered_file_path", type=str, default="filtered_results.csv")
# parser.add_argument("--classes", type=list, default=['小吃店', '日式料理(含居酒屋,串燒)', '火(鍋/爐)', '東南亞料理(不含日韓)', '海鮮熱炒', '特色餐廳(含雞、鵝、牛、羊肉)', '傳統餐廳', '燒烤', '韓式料理(含火鍋,烤肉)', '西餐廳(含美式,義式,墨式)', '西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)', '西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)', '早餐'])
parser.add_argument("--classes", type=list, default=['小吃店','日式料理(含居酒屋,串燒)','火(鍋/爐)','東南亞料理(不含日韓)','海鮮熱炒','特色餐廳(含雞、鵝、牛、羊肉)','釣蝦場','傳統餐廳','燒烤','韓式料理(含火鍋,烤肉)','PUB(Live Band)','PUB(一般,含Lounge)','PUB(電音\舞場)','五星級飯店','自助KTV(含連鎖,庭園自助)','西餐廳(含美式,義式,墨式)','咖啡廳(泡沫紅茶)','飯店(星級/旅館,不含五星級)','運動休閒館(含球類練習場,飛鏢等)','西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)','西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)','早餐'] )
# `小吃店`,`日式料理(含居酒屋,串燒)`,`火(鍋/爐)`,`東南亞料理(不含日韓)`,`海鮮熱炒`,`特色餐廳(含雞、鵝、牛、羊肉)`,`釣蝦場`,`傳統餐廳`,`燒烤`,`韓式料理(含火鍋,烤肉)`,`PUB(Live Band)`,`PUB(一般,含Lounge)`,`PUB(電音\舞場)`,`五星級飯店`,`自助KTV(含連鎖,庭園自助)`,`西餐廳(含美式,義式,墨式)`,`咖啡廳(泡沫紅茶)`,`飯店(星級/旅館,不含五星級)`,`運動休閒館(含球類練習場,飛鏢等)`,`西餐廳(餐酒館、酒吧、飛鏢吧、pub、lounge bar)`,`西餐廳(土耳其、漢堡、薯條、法式、歐式、印度)`,`早餐`
parser.add_argument("--backup_classes", type=list, default=['中式', '西式'])
parser.add_argument("--strategy", type=str, default='patch', choices=['replace', 'patch'])
parser.add_argument("--filter_provider", type=str, default='google', choices=['google', 'openai', 'anthropic'])
parser.add_argument("--filter_model", type=str, default='gemini-1.5-flash', choices=[ 'claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-haiku-20240307', 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview', 'gpt-4o', 'gpt-4o-mini', 'gemini-1.5-flash'])
parser.add_argument("--extraction_provider", type=str, default='openai', choices=['google', 'openai', 'anthropic'])
parser.add_argument("--extraction_model", type=str, default='gpt-3.5-turbo-0125', choices=[ 'claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-haiku-20240307', 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview', 'gpt-4o', 'gpt-4o-mini', 'gemini-1.5-flash'])
parser.add_argument("--regularization_provider", type=str, default='google', choices=['google', 'openai', 'anthropic'])
parser.add_argument("--regularization_model", type=str, default='gemini-1.5-flash', choices=['claude-3-5-sonnet-20240620', 'claude-3-sonnet-20240229', 'claude-3-haiku-20240307', 'gpt-3.5-turbo-0125', 'gpt-4-0125-preview', 'gpt-4o', 'gpt-4o-mini', 'gemini-1.5-flash'])
parser.add_argument("--serp_provider", type=str, default='serp', choices=['serp', 'serper'])
parser.add_argument("--n_processes", type=int, default=4)
args = parser.parse_args()
config = yaml.safe_load(open(args.config,"r").read())
category2supercategory = config['category2supercategory']
supercategory2category = reverse_category2supercategory(category2supercategory)
if args.task == 'new':
main(args)
elif args.task == 'continue':
continue_missing(args)
else:
raise Exception(f"Task {args.task} not implemented")
|