File size: 12,186 Bytes
acc80f0
 
 
 
 
 
 
 
 
e1cb97f
95bf488
2bf6d2f
acc80f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822d34
acc80f0
 
e1cb97f
2822d34
acc80f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aa753f
acc80f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822d34
acc80f0
 
2822d34
 
acc80f0
 
 
 
 
 
 
 
 
 
 
 
 
f1baf70
5589998
acc80f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import os
from tqdm import tqdm
from PIL import Image, ImageDraw ,ImageFont
from matplotlib import pyplot as plt
import torchvision.transforms as T
import os
import yaml
import numpy as np
import gradio as gr

# This file was copied from the DDPM inversion Repo - https://github.com/inbarhub/DDPM_inversion #

def load_512(image_path, left=0, right=0, top=0, bottom=0, device=None):
    if type(image_path) is str:
        image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
    else:
        image = image_path
    h, w, c = image.shape
    left = min(left, w-1)
    right = min(right, w - left - 1)
    top = min(top, h - left - 1)
    bottom = min(bottom, h - top - 1)
    image = image[top:h-bottom, left:w-right]
    h, w, c = image.shape
    if h < w:
        offset = (w - h) // 2
        image = image[:, offset:offset + h]
    elif w < h:
        offset = (h - w) // 2
        image = image[offset:offset + w]
    image = np.array(Image.fromarray(image).resize((512, 512)))
    image = torch.from_numpy(image).float() / 127.5 - 1
    image = image.permute(2, 0, 1).unsqueeze(0).to(device)

    return image 


def load_real_image(folder = "data/", img_name = None, idx = 0, img_size=512, device='cuda'):
    from PIL import Image
    from glob import glob
    if img_name is not None:
        path = os.path.join(folder, img_name)
    else:
        path = glob(folder + "*")[idx]

    img = Image.open(path).resize((img_size,
                                    img_size))

    img = pil_to_tensor(img).to(device)

    if img.shape[1]== 4:
        img = img[:,:3,:,:]
    return img

def mu_tilde(model, xt,x0, timestep):
    "mu_tilde(x_t, x_0) DDPM paper eq. 7"
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    alpha_t = model.scheduler.alphas[timestep]
    beta_t = 1 - alpha_t 
    alpha_bar = model.scheduler.alphas_cumprod[timestep]
    return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 +  ((alpha_t**0.5 *(1-alpha_prod_t_prev)) / (1- alpha_bar))*xt

def sample_xts_from_x0(model, x0, num_inference_steps=50):
    """
    Samples from P(x_1:T|x_0)
    """
    # torch.manual_seed(43256465436)
    alpha_bar = model.scheduler.alphas_cumprod
    sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
    alphas = model.scheduler.alphas
    betas = 1 - alphas
    variance_noise_shape = (
            num_inference_steps,
            model.unet.in_channels, 
            model.unet.sample_size,
            model.unet.sample_size)
    
    timesteps = model.scheduler.timesteps.to(model.device)
    t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
    xts = torch.zeros(variance_noise_shape).to(x0.device)
    for t in reversed(timesteps):
        idx = t_to_idx[int(t)]
        xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
    xts = torch.cat([xts, x0 ],dim = 0)

    return xts

def encode_text(model, prompts):
    text_input = model.tokenizer(
        prompts,
        padding="max_length",
        max_length=model.tokenizer.model_max_length, 
        truncation=True,
        return_tensors="pt",
    )
    with torch.no_grad():
        text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
    return text_encoding

def forward_step(model, model_output, timestep, sample):
    next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
                        timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)

    # 2. compute alphas, betas
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)

    # 5. TODO: simple noising implementatiom
    next_sample = model.scheduler.add_noise(pred_original_sample,
                                    model_output,
                                    torch.LongTensor([next_timestep]))
    return next_sample


def get_variance(model, timestep): #, prev_timestep):
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
    return variance

def inversion_forward_process(model, x0, 
                            etas = None,    
                            prog_bar = False,
                            prompt = "",
                            cfg_scale = 3.5,
                            num_inference_steps=50, eps = None
                             ):

    if not prompt=="":
        text_embeddings = encode_text(model, prompt)
    uncond_embedding = encode_text(model, "")
    timesteps = model.scheduler.timesteps.to(model.device)
    variance_noise_shape = (
        num_inference_steps,
        model.unet.in_channels, 
        model.unet.sample_size,
        model.unet.sample_size)
    if etas is None or (type(etas) in [int, float] and etas == 0):
        eta_is_zero = True
        zs = None
    else:
        eta_is_zero = False
        if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
        xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps)
        alpha_bar = model.scheduler.alphas_cumprod
        zs = torch.zeros(size=variance_noise_shape, device=model.device)
        
    t_to_idx = {int(v):k for k,v in enumerate(timesteps)}
    xt = x0
    op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)

    for t in op:
        idx = t_to_idx[int(t)]
        # 1. predict noise residual
        if not eta_is_zero:
            xt = xts[idx][None]
                    
        with torch.no_grad():
            out = model.unet.forward(xt, timestep =  t, encoder_hidden_states = uncond_embedding)
            if not prompt=="":
                cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)

        if not prompt=="":
            ## classifier free guidance
            noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
        else:
            noise_pred = out.sample

        if eta_is_zero:
            # 2. compute more noisy image and set x_t -> x_t+1
            xt = forward_step(model, noise_pred, t, xt)

        else: 
            xtm1 =  xts[idx+1][None]
            # pred of x0
            pred_original_sample = (xt - (1-alpha_bar[t])  ** 0.5 * noise_pred ) / alpha_bar[t] ** 0.5
            
            # direction to xt
            prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
            alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
            
            variance = get_variance(model, t)
            pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance ) ** (0.5) * noise_pred

            mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
            
            z = (xtm1 - mu_xt ) / ( etas[idx] * variance ** 0.5 )
            zs[idx] = z

            # correction to avoid error accumulation
            xtm1 = mu_xt + ( etas[idx] * variance ** 0.5 )*z
            xts[idx+1] = xtm1

    if not zs is None: 
        zs[-1] = torch.zeros_like(zs[-1]) 

    return xt, zs, xts


def reverse_step(model, model_output, timestep, sample, eta = 0, variance_noise=None):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    # 2. compute alphas, betas
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    beta_prod_t = 1 - alpha_prod_t
    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)    
    # variance = self.scheduler._get_variance(timestep, prev_timestep)
    variance = get_variance(model, timestep) #, prev_timestep)
    std_dev_t = eta * variance ** (0.5)
    # Take care of asymetric reverse process (asyrp)
    model_output_direction = model_output
    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
    pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    # 8. Add noice if eta > 0
    if eta > 0:
        if variance_noise is None:
            variance_noise = torch.randn(model_output.shape, device=model.device)
        sigma_z =  eta * variance ** (0.5) * variance_noise
        prev_sample = prev_sample + sigma_z

    return prev_sample

def inversion_reverse_process(model,
                    xT, 
                    etas = 0,
                    prompts = "",
                    cfg_scales = None,
                    prog_bar = False,
                    zs = None,
                    controller=None,
                    asyrp = False
                    ):

    batch_size = len(prompts)

    cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(model.device)

    text_embeddings = encode_text(model, prompts)
    uncond_embedding = encode_text(model, [""] * batch_size)

    if etas is None: etas = 0
    if type(etas) in [int, float]: etas = [etas]*model.scheduler.num_inference_steps
    assert len(etas) == model.scheduler.num_inference_steps
    timesteps = model.scheduler.timesteps.to(model.device)

    xt = xT.expand(batch_size, -1, -1, -1)
    op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] 

    t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}

    for t in op:
        idx = t_to_idx[int(t)]        
        ## Unconditional embedding
        with torch.no_grad():
            uncond_out = model.unet.forward(xt, timestep =  t, 
                                            encoder_hidden_states = uncond_embedding)

            ## Conditional embedding  
        if prompts:  
            with torch.no_grad():
                cond_out = model.unet.forward(xt, timestep =  t, 
                                                encoder_hidden_states = text_embeddings)
            
        
        z = zs[idx] if not zs is None else None
        z = z.expand(batch_size, -1, -1, -1)
        if prompts:
            ## classifier free guidance
            noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
        else: 
            noise_pred = uncond_out.sample
        # 2. compute less noisy image and set x_t -> x_t-1  
        xt = reverse_step(model, noise_pred, t, xt, eta = etas[idx], variance_noise = z) 
        if controller is not None:
            xt = controller.step_callback(xt)        
    return xt, zs