Spaces:
Runtime error
Runtime error
File size: 6,589 Bytes
4697625 f7759e6 4697625 3e5c24d 4697625 d754544 4697625 5eb5476 8e8ac22 4697625 8e8ac22 4697625 8e8ac22 4697625 9181b74 4697625 fda782c 17c1f09 4697625 fda782c 4697625 eca9079 756d8b3 4697625 5079251 4697625 19aee39 536c8d2 f1f5181 71ffbcc 536c8d2 8e8ac22 536c8d2 3bcf222 0479d0c 536c8d2 08a4d70 0479d0c 8e8ac22 e63f6d2 0479d0c 8e8ac22 0479d0c f1f5181 536c8d2 4697625 f1f5181 392d839 4697625 f2ae223 4697625 f2ae223 0d84727 35c6732 0130b22 4697625 5eb5476 4697625 c37a174 4697625 f2ae223 4697625 fadb039 04afdc5 4697625 fadb039 0ff0b1f 3bcf222 4697625 5079251 08e3a0e 5079251 fadb039 5079251 04afdc5 4697625 f1f5181 4697625 0d84727 536c8d2 71ffbcc 4697625 fda782c fadb039 fda782c fadb039 406e2d8 fda782c 406e2d8 fda782c 4697625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import torch
import random
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps)
return zs, wts
def sample(zs, xT, prompt_tar="", cfg_scale_tar=15, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=xT, etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs)
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
# sd_model_id = "runwayml/stable-diffusion-v1-5"
# sd_model_id = "CompVis/stable-diffusion-v1-4"
sd_model_id = "stabilityai/stable-diffusion-2-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
def get_example():
case = [
[
'Examples/gnochi_mirror.jpeg',
'',
'watercolor painting of a cat sitting next to a mirror',
100,
3.5,
36,
15,
'Examples/gnochi_mirror_watercolor_painting.png',
],]
return case
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM Inversion
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
def reset_latents():
xt = gr.State(value=False)
zs = gr.State(value=False)
def edit(input_image,
xt, zs,
src_prompt ="",
tar_prompt="",
steps=100,
cfg_scale_src = 3.5,
cfg_scale_tar = 15,
skip=36,
seed = 0,
randomized_seed = True):
if randomized_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
# offsets=(0,0,0,0)
x0 = load_512(input_image, device=device)
if not xt:
# invert and retrieve noise maps and latent
zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
xt = gr.State(value=wts[skip])
zs = gr.State(value=zs[skip:])
xt.value
output = sample(zs, xt, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar)
return output, xt, zs
gr.HTML(intro)
xt = gr.State(value=False)
zs = gr.State(value=False)
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
input_image.style(height=512, width=512)
output_image = gr.Image(label=f"Edited Image", interactive=False)
output_image.style(height=512, width=512)
with gr.Row():
tar_prompt = gr.Textbox(lines=1, label="Describe your desired edited output", interactive=True)
with gr.Row():
with gr.Column(scale=1, min_width=100):
edit_button = gr.Button("Run")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="describe the original image")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True)
with gr.Column():
# reconstruction
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
edit_button.click(
fn=edit,
inputs=[input_image,
xt, zs,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
skip,
seed,
randomize_seed
],
outputs=[output_image, xt, zs],
)
input_image.change(
fn = reset_latents
)
src_prompt.change(
fn = reset_latents
)
skip.change(
fn = reset_latents
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
cfg_scale_tar,
skip,
cfg_scale_tar,
output_image
],
outputs=[output_image ],
)
demo.queue()
demo.launch(share=False) |