File size: 7,064 Bytes
4697625
 
f7759e6
4697625
 
 
 
 
3e5c24d
4697625
 
 
d754544
4697625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5eb5476
8e8ac22
4697625
 
 
a7dff95
4697625
 
39f64fe
4697625
 
 
 
 
 
 
 
 
 
1fda3ba
9181b74
1fda3ba
4697625
 
 
 
 
 
 
 
 
fda782c
 
17c1f09
4697625
fda782c
4697625
 
eca9079
756d8b3
4697625
 
 
 
5079251
4697625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19aee39
536c8d2
0c1b1f7
 
 
71ffbcc
536c8d2
 
24da6c0
 
536c8d2
 
 
 
 
 
3bcf222
 
 
 
 
 
0479d0c
 
 
536c8d2
0c1b1f7
0479d0c
5edff5f
39f64fe
 
5edff5f
 
0c1b1f7
0479d0c
39f64fe
a7dff95
0479d0c
0c1b1f7
536c8d2
4697625
39f64fe
0c1b1f7
 
 
4697625
 
f2ae223
4697625
f2ae223
0d84727
35c6732
0130b22
4697625
 
 
5eb5476
4697625
c37a174
4697625
 
 
 
 
f2ae223
4697625
fadb039
04afdc5
4697625
 
fadb039
0ff0b1f
3bcf222
4697625
 
 
 
36a12a6
24da6c0
5079251
 
 
fadb039
 
5079251
04afdc5
 
4697625
0c1b1f7
4697625
 
0d84727
0c1b1f7
 
0d84727
 
536c8d2
0c1b1f7
 
536c8d2
 
39f64fe
 
 
71ffbcc
4697625
fda782c
 
 
 
fadb039
fda782c
fadb039
406e2d8
fda782c
406e2d8
fda782c
4697625
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
import torch
import random
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from torch import autocast, inference_mode
import re


def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):

  #  inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf, 
  #  based on the code in https://github.com/inbarhub/DDPM_inversion
   
  #  returns wt, zs, wts:
  #  wt - inverted latent
  #  wts - intermediate inverted latents
  #  zs - noise maps

  sd_pipe.scheduler.set_timesteps(num_diffusion_steps)

  # vae encode image
  with autocast("cuda"), inference_mode():
      w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()

  # find Zs and wts - forward process
  wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=False, num_inference_steps=num_diffusion_steps)
  return zs, wts



def sample(zs, wts, prompt_tar="", skip=36, cfg_scale_tar=15, eta = 1):

    # reverse process (via Zs and wT)
    w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=False, zs=zs[skip:])
    
    # vae decode image
    with autocast("cuda"), inference_mode():
        x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
    if x0_dec.dim()<4:
        x0_dec = x0_dec[None,:,:,:]
    img = image_grid(x0_dec)
    return img

# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
# sd_model_id = "CompVis/stable-diffusion-v1-4"
# sd_model_id = "stabilityai/stable-diffusion-2-base"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")



def get_example():
    case = [
        [
            'Examples/gnochi_mirror.jpeg', 
            '',
            'watercolor painting of a cat sitting next to a mirror',
            100,
            3.5,
            36,
            15,
            'Examples/gnochi_mirror_watercolor_painting.png', 
             ],]
    return case







########
# demo #
########
                        
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
   Edit Friendly DDPM Inversion
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> 
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
    
    def reset_do_inversion():
        do_inversion = True
        return do_inversion


    def edit(input_image,
            do_inversion, 
             wts, zs,
            src_prompt ="", 
            tar_prompt="",
            steps=100,
            cfg_scale_src = 3.5,
            cfg_scale_tar = 15,
            skip=36,
            seed = 0,
            randomized_seed = True):

        if randomized_seed:
            seed = random.randint(0, np.iinfo(np.int32).max)
            
        torch.manual_seed(seed)
         # offsets=(0,0,0,0)
        x0 = load_512(input_image, device=device)
    
        if do_inversion:
            # invert and retrieve noise maps and latent
            zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
            # xt = gr.State(value=wts[skip])
            # zs = gr.State(value=zs[skip:])
            wts = gr.State(value=wts_tensor)
            zs = gr.State(value=zs_tensor)
            do_inversion = False
        
        # output = sample(zs.value, xt.value, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar)
        output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=cfg_scale_tar)
    
        return output, wts, zs, do_inversion
    
    gr.HTML(intro)
    # xt = gr.State(value=False)
    wts = gr.State()
    zs = gr.State()
    do_inversion = gr.State(value=True)
    with gr.Row():
        input_image = gr.Image(label="Input Image", interactive=True)
        input_image.style(height=512, width=512)
        output_image = gr.Image(label=f"Edited Image", interactive=False)
        output_image.style(height=512, width=512)
    
    with gr.Row():
        tar_prompt = gr.Textbox(lines=1, label="Describe your desired edited output", interactive=True)

    with gr.Row():
        with gr.Column(scale=1, min_width=100):
            edit_button = gr.Button("Run")



    with gr.Accordion("Advanced Options", open=False):
        with gr.Row():
            with gr.Column():
                #inversion
                src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="describe the original image")
                steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
                cfg_scale_src = gr.Slider(minimum=1, maximum=15, value=3.5, label=f"Source Guidance Scale", interactive=True)
            with gr.Column():
                # reconstruction
                skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
                cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
                seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
                randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
            

    edit_button.click(
        fn=edit,
        inputs=[input_image,
                do_inversion, wts, zs, 
            src_prompt, 
            tar_prompt,
            steps,
            cfg_scale_src,
            cfg_scale_tar,
            skip,
            seed,
            randomize_seed
        ],
        outputs=[output_image, wts, zs, do_inversion],
    )

    input_image.change(
        fn = reset_do_inversion,
        outputs = [do_inversion]
    )

    src_prompt.change(
        fn = reset_do_inversion,
        outputs = [do_inversion]
    )

    # skip.change(
    #     fn = reset_latents
    # )


    gr.Examples(
        label='Examples', 
        examples=get_example(), 
        inputs=[input_image, src_prompt, tar_prompt, steps,
                    cfg_scale_tar,
                    skip,
                    cfg_scale_tar,
                    output_image
               ],
        outputs=[output_image ],
    )



demo.queue()
demo.launch(share=False)