File size: 5,107 Bytes
6f5ac87
b345bd5
 
 
 
6f5ac87
35410c9
 
 
bac63be
6f5ac87
 
 
 
 
 
 
 
 
 
 
f3958f6
6f5ac87
 
 
bdbb930
6f5ac87
 
 
 
 
85b23b5
f3958f6
 
 
 
 
 
 
 
 
 
 
 
e29b3e1
f3958f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad137f
f3958f6
 
 
e29b3e1
fca7821
169e0bb
2ad137f
6f5ac87
754c31a
6f5ac87
754c31a
 
6f5ac87
754c31a
 
6f5ac87
 
754c31a
151bcd3
 
6f5ac87
 
754c31a
 
151bcd3
6f5ac87
e29b3e1
6f5ac87
 
 
f3958f6
 
 
 
fca7821
e29b3e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO

# from ultralyticsplus import render_result
# import requests
# import cv2

image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/2daab6ea3310e14eb801.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/7e77c596436c9132c87d.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/3355ec3269c8bb96e2d9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/33148464019ed3c08a8f.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/b5db5e42d8b80ae653a9 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/b272fec7783daa63f32c.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/bf1e22b0a44a76142f5b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
             ['test_images/ee106392e56837366e79.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45]]

# Load YOLO model
# model = YOLO('linhcuem/chamdiem_yolov8_ver10')

###################################################
def yolov8_img_inference(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45,
):
    model = YOLO(model_path)
    # model.conf = conf_threshold
    # model.iou = iou_threshold
    model.overrides['conf'] = conf_threshold
    model.overrides['iou'] = iou_threshold
    model.overrides['agnostic_nms'] = False
    model.overrides['max_det'] = 1000
    image = read_image
    results = model.predict(image)
    results = render_result(model=model, image=image, result=results[0])
    
    
    # results = model.predict(image, imgsz=image_size, return_outputs=True)
    # results = model.predict(image)
    # object_prediction_list = []
    # for _, image_results in enumerate(results):
    #     if len(image_results)!=0:
    #         image_predictions_in_xyxy_format = image_results['det']
    #         for pred in image_predictions_in_xyxy_format:
    #             x1, y1, x2, y2 = (
    #                 int(pred[0]),
    #                 int(pred[1]),
    #                 int(pred[2]),
    #                 int(pred[3]),
    #             )
    #             bbox = [x1, y1, x2, y2]
    #             score = pred[4]
    #             category_name = model.model.names[int(pred[5])]
    #             category_id = pred[5]
    #             object_prediction = ObjectPrediction(
    #                 bbox=bbox,
    #                 category_id=int(category_id),
    #                 score=score,
    #                 category_name=category_name,
    #             )
    #             object_prediction_list.append(object_prediction)

    # image = read_image(image)
    # output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
    # return output_image['image']
    # render = render_result(model=model, image=image, result=results[0])
    

        

inputs_image = [
    gr.inputs.Image(type="filepath", label="Input Image"),
    gr.inputs.Dropdown(["linhcuem/chamdiem_yolov8_ver10"], 
                       default="linhcuem/chamdiem_yolov8_ver10", label="Model"),
    gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]

outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
title = "Tất cả do anh Đạt"

interface_image = gr.Interface(
    fn=yolov8_img_inference,
    inputs=inputs_image,
    outputs=outputs_image,
    title=title,
    examples=image_path,
    cache_examples=True,
    theme='huggingface'
)

# gr.TabbedInterface(
#     [interface_image],
#     tab_names=['Image inference']
# ).queue().launch()

interface_image.launch(debug=True, enable_queue=True)