Spaces:
Running
Running
File size: 5,107 Bytes
6f5ac87 b345bd5 6f5ac87 35410c9 bac63be 6f5ac87 f3958f6 6f5ac87 bdbb930 6f5ac87 85b23b5 f3958f6 e29b3e1 f3958f6 2ad137f f3958f6 e29b3e1 fca7821 169e0bb 2ad137f 6f5ac87 754c31a 6f5ac87 754c31a 6f5ac87 754c31a 6f5ac87 754c31a 151bcd3 6f5ac87 754c31a 151bcd3 6f5ac87 e29b3e1 6f5ac87 f3958f6 fca7821 e29b3e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO
# from ultralyticsplus import render_result
# import requests
# import cv2
image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/2daab6ea3310e14eb801.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/7e77c596436c9132c87d.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/3355ec3269c8bb96e2d9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/33148464019ed3c08a8f.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/b5db5e42d8b80ae653a9 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/b272fec7783daa63f32c.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/bf1e22b0a44a76142f5b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],
['test_images/ee106392e56837366e79.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45]]
# Load YOLO model
# model = YOLO('linhcuem/chamdiem_yolov8_ver10')
###################################################
def yolov8_img_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
model = YOLO(model_path)
# model.conf = conf_threshold
# model.iou = iou_threshold
model.overrides['conf'] = conf_threshold
model.overrides['iou'] = iou_threshold
model.overrides['agnostic_nms'] = False
model.overrides['max_det'] = 1000
image = read_image
results = model.predict(image)
results = render_result(model=model, image=image, result=results[0])
# results = model.predict(image, imgsz=image_size, return_outputs=True)
# results = model.predict(image)
# object_prediction_list = []
# for _, image_results in enumerate(results):
# if len(image_results)!=0:
# image_predictions_in_xyxy_format = image_results['det']
# for pred in image_predictions_in_xyxy_format:
# x1, y1, x2, y2 = (
# int(pred[0]),
# int(pred[1]),
# int(pred[2]),
# int(pred[3]),
# )
# bbox = [x1, y1, x2, y2]
# score = pred[4]
# category_name = model.model.names[int(pred[5])]
# category_id = pred[5]
# object_prediction = ObjectPrediction(
# bbox=bbox,
# category_id=int(category_id),
# score=score,
# category_name=category_name,
# )
# object_prediction_list.append(object_prediction)
# image = read_image(image)
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
# return output_image['image']
# render = render_result(model=model, image=image, result=results[0])
inputs_image = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["linhcuem/chamdiem_yolov8_ver10"],
default="linhcuem/chamdiem_yolov8_ver10", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
title = "Tất cả do anh Đạt"
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=title,
examples=image_path,
cache_examples=True,
theme='huggingface'
)
# gr.TabbedInterface(
# [interface_image],
# tab_names=['Image inference']
# ).queue().launch()
interface_image.launch(debug=True, enable_queue=True) |