Spaces:
Runtime error
Runtime error
File size: 8,233 Bytes
4df8c11 55966a7 4df8c11 b372206 4df8c11 7606460 4df8c11 7606460 4df8c11 7606460 4df8c11 0d403a5 4df8c11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import plotly.express as px
import streamlit as st
import pandas as pd
from ai_assistant import get_ai_response
def get_score_rating(s):
if s >= 0.75:
return "HIGH"
elif 0.4 <= s < 0.75:
return "MEDIUM"
elif s < 0.4:
return "LOW"
def get_cov_rating(c):
if c >= 4:
return "Sufficient Coverage"
elif 2 <= c < 4:
return "Insufficient Coverage"
elif c < 2:
return "Significantly Insufficient Coverage"
@st.cache_data
def get_cust_data_dict(cust_name="Wong Ling Yit"):
data = pd.read_csv("data/yoda_data.csv")
poe_data = pd.read_csv("data/yoda_poe.csv")
reasons_df = pd.read_csv("data/yoda_reasonings.csv")
temp = data[data["cust_name"] == cust_name]
temp_poe = poe_data[poe_data["cust_name"] == cust_name]
temp_reason = reasons_df[reasons_df["cust_name"] == cust_name]
if len(temp) != 7 or \
len(temp_poe) != 1 or \
len(temp_reason) != 5:
temp = data[data["cust_name"] == "Wong Ling Yit"]
temp_poe = poe_data[poe_data["cust_name"] == "Wong Ling Yit"]
temp_reason = reasons_df[reasons_df["cust_name"] == "Wong Ling Yit"]
temp = temp.rename(columns={
"prod_cat": "Product Category",
"cov_level": "Coverage Level",
"prop_score": "Score",
"recom_products": "Recommended Product"
})
temp["Coverage Rating"] = temp["Coverage Level"].apply(
lambda c: get_cov_rating(c)
)
temp["Score Rating"] = temp["Score"].apply(
lambda s: get_score_rating(s)
)
cov_rating_map = dict(zip(
temp["Product Category"],
temp["Coverage Rating"]
))
score_rating_map = dict(zip(
temp["Product Category"],
temp["Score Rating"]
))
radar_df = pd.DataFrame({
"Product Category": [
"Retirement",
"Protection",
"Savings",
"CI",
"Investment",
"Legacy",
"Medical"
]
})
radar_df = pd.merge(radar_df, temp, on="Product Category", how="inner")
temp = temp.sort_values("Score", ascending=False).reset_index(drop=True)
top_categories = temp[:3]["Product Category"].tolist()
top_recom_products = temp[:3]["Recommended Product"].tolist()
top_products = []
for c, p in zip(top_categories, top_recom_products):
product_msg = f"{c}: {p}"
top_products.append(product_msg)
top_score = temp.iloc[0]["Score"]
score_rating = get_score_rating(top_score)
top_score_msg = f"{top_score:.2f} - {score_rating}"
poe_findings = temp_poe.iloc[0]["poe_findings"]
temp_reason = temp_reason.sort_values("r_index", ascending=True).reset_index(drop=True)
temp_reason_ls = temp_reason["reasonings"].tolist()
return (radar_df, temp, top_products, top_score_msg,
poe_findings, temp_reason_ls,
cov_rating_map, score_rating_map)
st.title("Persona: Financial Consultant - Leads follow-up")
st.header("Lead selection", divider="blue")
st.subheader("My customers - Hot Lead🔥")
cust_option = st.selectbox(
label="Customer options",
options=(
"Darek Cieslinski", "Wong Ling Yit"),
label_visibility="collapsed"
)
## "Wei Shan Chin", "Wong Chen Mey", "Tan Li Lin", "Prabhavathi Bharadwaj",
## "Deren Meng", "Anthony Finch", "Ariel CL Ong", "Darek Cieslinski"
data_pack = get_cust_data_dict(cust_name=cust_option)
radar_df = data_pack[0]
df = data_pack[1]
top_products = data_pack[2]
score_msg = data_pack[3]
poe_findings = data_pack[4]
model_reasons = data_pack[5]
cov_rating_map = data_pack[6]
score_rating_map = data_pack[7]
view_1, view_2 = st.columns(2, gap="medium")
with view_1:
st.subheader("Coverage level")
fig = px.line_polar(radar_df, r="Coverage Level",
theta="Product Category", line_close=True)
fig.update_layout(
margin=dict(l=60, r=40, t=20, b=20),
)
fig.update_traces(fill="toself")
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
with view_2:
st.subheader("Propensity to buy")
fig = px.bar(df, x="Product Category", y="Score")
fig.update_layout(
margin=dict(l=60, r=40, t=50, b=20),
)
st.plotly_chart(fig, theme="streamlit", use_container_width=True)
st.write("")
st.write("***Expand to see more details.***")
with st.expander("Recent engagement.."):
st.subheader("Financial Needs Analysis (FNA)", divider="blue")
st.write("")
st.write("Date: 15/06/2022 - Protection need for family")
st.write("")
st.write("Date: 18/02/2019 - Critical Illness coverage gap of S$50,000")
st.divider()
st.subheader("Last policies purchased", divider="blue")
st.write("")
st.write("Date: 02/12/2017 - Purchased Protection Plan - PRUActive LinkGuard for self")
st.write("")
st.write("Date: 08/11/2013 - Purchased Savings Plan - PRUWealth Plus (SGD) for daughter")
st.divider()
st.write("")
st.header("Insights", divider="blue")
st.markdown(
f"""
**Recommended Products:**
- {top_products[0]}
- {top_products[1]}
- {top_products[2]}
**Top LIA Coverage Gap:**
- {poe_findings}
**Propensity to buy score:**
- {score_msg}
"""
)
st.header("Reasonings", divider="blue")
st.write("")
st.markdown(
f"""
**Model Reasonings:**
- {model_reasons[0]}
- {model_reasons[1]}
- {model_reasons[2]}
- {model_reasons[3]}
- {model_reasons[4]}
"""
)
st.write("")
st.header("Sales pitch", divider="blue")
list_of_cust_tabs = st.tabs(tabs=["Summary", "Assistant"])
summary_tab = list_of_cust_tabs[0]
pitch_tab = list_of_cust_tabs[1]
about_this_cust = f"""
Opportunities
===============
In terms of current coverage level,
- Retirement: {cov_rating_map["Retirement"]}
- Protection: {cov_rating_map["Protection"]}
- Savings: {cov_rating_map["Savings"]}
- Critical Illness: {cov_rating_map["CI"]}
- Investment: {cov_rating_map["Investment"]}
- Legacy: {cov_rating_map["Legacy"]}
- Medical: {cov_rating_map["Medical"]}
In terms of likelihood to buy,
- Retirement: {score_rating_map["Retirement"]}
- Protection: {score_rating_map["Protection"]}
- Savings: {score_rating_map["Savings"]}
- Critical Illness: {score_rating_map["CI"]}
- Investment: {score_rating_map["Investment"]}
- Legacy: {score_rating_map["Legacy"]}
- Medical: {score_rating_map["Medical"]}
Recent engagements
===================
Financial Needs Analysis (FNA):
Date: 15/06/2022 - Protection need for family
Date: 18/02/2019 - Critical Illness coverage gap of S$50,000
Last policies purchased:
Date: 02/12/2017 - Purchased Protection Plan - PRUActive LinkGuard for self
Date: 08/11/2013 - Purchased Savings Plan - PRUWealth Plus (SGD) for daughter
Insights
=========
Recommended Products:
- {top_products[0]}
- {top_products[1]}
- {top_products[2]}
Top LIA Coverage Gap:
- {poe_findings}
Propensity to buy score: {score_msg}
Predictive model reasonings
===========================
- {model_reasons[0]}
- {model_reasons[1]}
- {model_reasons[2]}
- {model_reasons[3]}
- {model_reasons[4]}
""".strip()
with summary_tab:
txt = st.text_area(
"About this customer",
about_this_cust,
height=500
)
with pitch_tab:
st.write("Suggest sales pitch for this customer")
generate_button = st.button("Generate")
if generate_button:
placeholder = st.empty()
full_response = ""
stream = get_ai_response(about_this_cust)
for chunk in stream:
token = chunk.choices[0].delta.content
if token is not None:
# full_response += token
full_response += token.replace("\n", " \n") \
.replace("$", "\$")
# .replace("\[", "$$")
placeholder.markdown(full_response)
placeholder.markdown(full_response)
print(full_response) |