File size: 6,500 Bytes
319a292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import re
import json
import requests
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from google.cloud import storage
from google.auth import exceptions
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.hf_api import HfApi, HfFolder, HfLoginManager
from io import BytesIO
from dotenv import load_dotenv
import uvicorn
load_dotenv()
# Variables de entorno
API_KEY = os.getenv("API_KEY")
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HF_API_TOKEN = os.getenv("HF_API_TOKEN") # Token de Hugging Face
# Inicializaci贸n del cliente de GCS
try:
credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
storage_client = storage.Client.from_service_account_info(credentials_info)
bucket = storage_client.bucket(GCS_BUCKET_NAME)
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError) as e:
print(f"Error al cargar credenciales o bucket: {e}")
exit(1)
# Inicializaci贸n de FastAPI
app = FastAPI()
# Inicio de sesi贸n en Hugging Face
try:
if not HF_API_TOKEN:
raise ValueError("El token de Hugging Face no est谩 definido en las variables de entorno.")
HfApi().set_access_token(HF_API_TOKEN)
print("Inicio de sesi贸n en Hugging Face exitoso.")
except Exception as e:
print(f"Error al iniciar sesi贸n en Hugging Face: {e}")
exit(1)
class DownloadModelRequest(BaseModel):
model_name: str
pipeline_task: str
input_text: str
class GCSStreamHandler:
def __init__(self, bucket_name):
self.bucket = storage_client.bucket(bucket_name)
def file_exists(self, blob_name):
return self.bucket.blob(blob_name).exists()
def stream_file_from_gcs(self, blob_name):
blob = self.bucket.blob(blob_name)
if not blob.exists():
raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.")
return blob.download_as_bytes()
def upload_file_to_gcs(self, blob_name, data_stream):
blob = self.bucket.blob(blob_name)
blob.upload_from_file(data_stream)
print(f"Archivo {blob_name} subido a GCS.")
def ensure_bucket_structure(self, model_prefix):
# Crea autom谩ticamente la estructura en el bucket si no existe
required_files = ["config.json", "tokenizer.json"]
for filename in required_files:
blob_name = f"{model_prefix}/{filename}"
if not self.file_exists(blob_name):
print(f"Creando archivo ficticio: {blob_name}")
self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json")
def stream_model_files(self, model_prefix, model_patterns):
model_files = {}
for pattern in model_patterns:
blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/"))
for blob in blobs:
if re.match(pattern, blob.name.split('/')[-1]):
print(f"Archivo encontrado: {blob.name}")
model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes())
return model_files
@app.post("/predict/")
async def predict(request: DownloadModelRequest):
try:
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
# Asegura la estructura del bucket
gcs_handler.ensure_bucket_structure(request.model_name)
# Define patrones para los archivos de modelos
model_patterns = [
r"pytorch_model-\d+-of-\d+",
r"model-\d+",
r"pytorch_model.bin",
r"model.safetensors"
]
# Carga los archivos del modelo desde el bucket
model_files = gcs_handler.stream_model_files(request.model_name, model_patterns)
# Cargar configuraci贸n y modelo
config_stream = gcs_handler.stream_file_from_gcs(f"{request.model_name}/config.json")
tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{request.model_name}/tokenizer.json")
model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
state_dict = {}
for filename, stream in model_files.items():
state_dict.update(torch.load(stream, map_location="cpu"))
model.load_state_dict(state_dict)
tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream))
# Crear pipeline
pipeline_task = request.pipeline_task
if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]:
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
input_text = request.input_text
result = pipeline_(input_text)
return {"response": result}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {e}")
@app.post("/upload/")
async def upload_model_to_gcs(model_name: str):
"""
Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
"""
try:
gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)
# Archivos comunes de los modelos
file_patterns = [
"pytorch_model.bin",
"model.safetensors",
"config.json",
"tokenizer.json",
]
# Agregar patrones para fragmentos de modelos
for i in range(1, 100):
file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
file_patterns.append(f"model-{i:05}")
for filename in file_patterns:
url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
try:
response = requests.get(url, headers=headers, stream=True)
if response.status_code == 200:
blob_name = f"{model_name}/{filename}"
blob = bucket.blob(blob_name)
blob.upload_from_file(BytesIO(response.content))
print(f"Archivo {filename} subido correctamente a GCS.")
except Exception as e:
print(f"Archivo {filename} no encontrado: {e}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al subir modelo: {e}")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|