File size: 6,500 Bytes
319a292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import re
import json
import requests
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from google.cloud import storage
from google.auth import exceptions
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.hf_api import HfApi, HfFolder, HfLoginManager
from io import BytesIO
from dotenv import load_dotenv
import uvicorn

load_dotenv()

# Variables de entorno
API_KEY = os.getenv("API_KEY")
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GOOGLE_APPLICATION_CREDENTIALS_JSON = os.getenv("GOOGLE_APPLICATION_CREDENTIALS_JSON")
HF_API_TOKEN = os.getenv("HF_API_TOKEN")  # Token de Hugging Face

# Inicializaci贸n del cliente de GCS
try:
    credentials_info = json.loads(GOOGLE_APPLICATION_CREDENTIALS_JSON)
    storage_client = storage.Client.from_service_account_info(credentials_info)
    bucket = storage_client.bucket(GCS_BUCKET_NAME)
except (exceptions.DefaultCredentialsError, json.JSONDecodeError, KeyError) as e:
    print(f"Error al cargar credenciales o bucket: {e}")
    exit(1)

# Inicializaci贸n de FastAPI
app = FastAPI()

# Inicio de sesi贸n en Hugging Face
try:
    if not HF_API_TOKEN:
        raise ValueError("El token de Hugging Face no est谩 definido en las variables de entorno.")
    HfApi().set_access_token(HF_API_TOKEN)
    print("Inicio de sesi贸n en Hugging Face exitoso.")
except Exception as e:
    print(f"Error al iniciar sesi贸n en Hugging Face: {e}")
    exit(1)


class DownloadModelRequest(BaseModel):
    model_name: str
    pipeline_task: str
    input_text: str


class GCSStreamHandler:
    def __init__(self, bucket_name):
        self.bucket = storage_client.bucket(bucket_name)

    def file_exists(self, blob_name):
        return self.bucket.blob(blob_name).exists()

    def stream_file_from_gcs(self, blob_name):
        blob = self.bucket.blob(blob_name)
        if not blob.exists():
            raise HTTPException(status_code=404, detail=f"Archivo '{blob_name}' no encontrado en GCS.")
        return blob.download_as_bytes()

    def upload_file_to_gcs(self, blob_name, data_stream):
        blob = self.bucket.blob(blob_name)
        blob.upload_from_file(data_stream)
        print(f"Archivo {blob_name} subido a GCS.")

    def ensure_bucket_structure(self, model_prefix):
        # Crea autom谩ticamente la estructura en el bucket si no existe
        required_files = ["config.json", "tokenizer.json"]
        for filename in required_files:
            blob_name = f"{model_prefix}/{filename}"
            if not self.file_exists(blob_name):
                print(f"Creando archivo ficticio: {blob_name}")
                self.bucket.blob(blob_name).upload_from_string("{}", content_type="application/json")

    def stream_model_files(self, model_prefix, model_patterns):
        model_files = {}
        for pattern in model_patterns:
            blobs = list(self.bucket.list_blobs(prefix=f"{model_prefix}/"))
            for blob in blobs:
                if re.match(pattern, blob.name.split('/')[-1]):
                    print(f"Archivo encontrado: {blob.name}")
                    model_files[blob.name.split('/')[-1]] = BytesIO(blob.download_as_bytes())
        return model_files


@app.post("/predict/")
async def predict(request: DownloadModelRequest):
    try:
        gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)

        # Asegura la estructura del bucket
        gcs_handler.ensure_bucket_structure(request.model_name)

        # Define patrones para los archivos de modelos
        model_patterns = [
            r"pytorch_model-\d+-of-\d+",
            r"model-\d+",
            r"pytorch_model.bin",
            r"model.safetensors"
        ]

        # Carga los archivos del modelo desde el bucket
        model_files = gcs_handler.stream_model_files(request.model_name, model_patterns)

        # Cargar configuraci贸n y modelo
        config_stream = gcs_handler.stream_file_from_gcs(f"{request.model_name}/config.json")
        tokenizer_stream = gcs_handler.stream_file_from_gcs(f"{request.model_name}/tokenizer.json")

        model = AutoModelForCausalLM.from_pretrained(BytesIO(config_stream))
        state_dict = {}

        for filename, stream in model_files.items():
            state_dict.update(torch.load(stream, map_location="cpu"))

        model.load_state_dict(state_dict)
        tokenizer = AutoTokenizer.from_pretrained(BytesIO(tokenizer_stream))

        # Crear pipeline
        pipeline_task = request.pipeline_task
        if pipeline_task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering"]:
            raise HTTPException(status_code=400, detail="Unsupported pipeline task")

        pipeline_ = pipeline(pipeline_task, model=model, tokenizer=tokenizer)
        input_text = request.input_text
        result = pipeline_(input_text)

        return {"response": result}

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error: {e}")


@app.post("/upload/")
async def upload_model_to_gcs(model_name: str):
    """
    Descarga un modelo desde Hugging Face y lo sube a GCS en streaming.
    """
    try:
        gcs_handler = GCSStreamHandler(GCS_BUCKET_NAME)

        # Archivos comunes de los modelos
        file_patterns = [
            "pytorch_model.bin",
            "model.safetensors",
            "config.json",
            "tokenizer.json",
        ]

        # Agregar patrones para fragmentos de modelos
        for i in range(1, 100):
            file_patterns.append(f"pytorch_model-{i:05}-of-{100:05}")
            file_patterns.append(f"model-{i:05}")

        for filename in file_patterns:
            url = f"https://huggingface.co/{model_name}/resolve/main/{filename}"
            headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
            try:
                response = requests.get(url, headers=headers, stream=True)
                if response.status_code == 200:
                    blob_name = f"{model_name}/{filename}"
                    blob = bucket.blob(blob_name)
                    blob.upload_from_file(BytesIO(response.content))
                    print(f"Archivo {filename} subido correctamente a GCS.")
            except Exception as e:
                print(f"Archivo {filename} no encontrado: {e}")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error al subir modelo: {e}")


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)