File size: 9,606 Bytes
98c5805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.network import HourGlass2, SpixelNet, ColorProbNet
from models.transformer2d import EncoderLayer, DecoderLayer, TransformerEncoder, TransformerDecoder
from models.position_encoding import build_position_encoding
from models import basic, clusterkit, anchor_gen
from collections import OrderedDict
from utils import util, cielab


class SpixelSeg(nn.Module):
    def __init__(self, inChannel=1, outChannel=9, batchNorm=True):
        super(SpixelSeg, self).__init__()
        self.net = SpixelNet(inChannel=inChannel, outChannel=outChannel, batchNorm=batchNorm)

    def get_trainable_params(self, lr=1.0):
        #print('=> [optimizer] finetune backbone with smaller lr')
        params = []
        for name, param in self.named_parameters():
            if 'xxx' in name:
                params.append({'params': param, 'lr': lr})
            else:
                params.append({'params': param})
        return params

    def forward(self, input_grays):
        pred_probs = self.net(input_grays)
        return pred_probs


class AnchorColorProb(nn.Module):
    def __init__(self, inChannel=1, outChannel=313, sp_size=16, d_model=64, use_dense_pos=True, spix_pos=False, learning_pos=False, \
                random_hint=False, hint2regress=False, enhanced=False, use_mask=False, rank=0, colorLabeler=None):
        super(AnchorColorProb, self).__init__()
        self.sp_size = sp_size
        self.spix_pos = spix_pos
        self.use_token_mask = use_mask
        self.hint2regress = hint2regress
        self.segnet = SpixelSeg(inChannel=1, outChannel=9, batchNorm=True)
        self.repnet = ColorProbNet(inChannel=inChannel, outChannel=64)
        self.enhanced = enhanced
        if self.enhanced:
            self.enhanceNet = HourGlass2(inChannel=64+1, outChannel=2, resNum=3, normLayer=nn.BatchNorm2d)

        ## transformer architecture
        self.n_vocab = 313
        d_model, dim_feedforward, nhead = d_model, 4*d_model, 8
        dropout, activation = 0.1, "relu"
        n_enc_layers, n_dec_layers = 6, 6
        enc_layer = EncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, use_dense_pos)
        self.wildpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos)
        self.hintpath = TransformerEncoder(enc_layer, n_enc_layers, use_dense_pos)
        if self.spix_pos:
            n_pos_x, n_pos_y = 256, 256
        else:
            n_pos_x, n_pos_y = 256//sp_size, 16//sp_size
        self.pos_enc = build_position_encoding(d_model//2, n_pos_x, n_pos_y, is_learned=False)

        self.mid_word_prj = nn.Linear(d_model, self.n_vocab, bias=False)
        if self.hint2regress:
            self.trg_word_emb = nn.Linear(d_model+2+1, d_model, bias=False)
            self.trg_word_prj = nn.Linear(d_model, 2, bias=False)
        else:
            self.trg_word_emb = nn.Linear(d_model+self.n_vocab+1, d_model, bias=False)
            self.trg_word_prj = nn.Linear(d_model, self.n_vocab, bias=False)
        
        self.colorLabeler = colorLabeler
        anchor_mode = 'random' if random_hint else 'clustering'
        self.anchorGen = anchor_gen.AnchorAnalysis(mode=anchor_mode, colorLabeler=self.colorLabeler)
        self._reset_parameters()
        
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
    
    def load_and_froze_weight(self, checkpt_path):
        data_dict = torch.load(checkpt_path, map_location=torch.device('cpu'))
        '''
        for param_tensor in data_dict['state_dict']:
            print(param_tensor,'\t',data_dict['state_dict'][param_tensor].size())
        '''
        self.segnet.load_state_dict(data_dict['state_dict'])
        for name, param in self.segnet.named_parameters():
            param.requires_grad = False
        self.segnet.eval()

    def set_train(self):
        ## running mode only affect certain modules, e.g. Dropout, BN, etc.
        self.repnet.train()
        self.wildpath.train()
        self.hintpath.train()
        if self.enhanced:
            self.enhanceNet.train()
    
    def get_entry_mask(self, mask_tensor):
        if mask_tensor is None:
            return None
        ## flatten (N,1,H,W) to (N,HW)
        return mask_tensor.flatten(1)

    def forward(self, input_grays, input_colors, n_anchors=8, sampled_T=0):
        '''
        Notice: function was customized for inferece only
        '''
        affinity_map = self.segnet(input_grays)
        pred_feats = self.repnet(input_grays)
        if self.spix_pos:
            full_pos_feats = self.pos_enc(pred_feats)
            proxy_feats = torch.cat([pred_feats, input_colors, full_pos_feats], dim=1)
            pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True)
            feat_tokens = pooled_proxy_feats[:,:64,:,:]
            spix_colors = pooled_proxy_feats[:,64:66,:,:]
            pos_feats = pooled_proxy_feats[:,66:,:,:]
        else:
            proxy_feats = torch.cat([pred_feats, input_colors], dim=1)
            pooled_proxy_feats, conf_sum = basic.poolfeat(proxy_feats, affinity_map, self.sp_size, self.sp_size, True)
            feat_tokens = pooled_proxy_feats[:,:64,:,:]
            spix_colors = pooled_proxy_feats[:,64:,:,:]
            pos_feats = self.pos_enc(feat_tokens)

        token_labels = torch.max(self.colorLabeler.encode_ab2ind(spix_colors), dim=1, keepdim=True)[1]
        spixel_sizes = basic.get_spixel_size(affinity_map, self.sp_size, self.sp_size)
        all_one_map = torch.ones(spixel_sizes.shape, device=input_grays.device)
        empty_entries = torch.where(spixel_sizes < 25/(self.sp_size**2), all_one_map, 1-all_one_map)
        src_pad_mask = self.get_entry_mask(empty_entries) if self.use_token_mask else None
        trg_pad_mask = src_pad_mask
        
        ## parallel prob
        N,C,H,W = feat_tokens.shape
        ## (N,C,H,W) -> (HW,N,C)
        src_pos_seq = pos_feats.flatten(2).permute(2, 0, 1)
        src_seq = feat_tokens.flatten(2).permute(2, 0, 1)
        ## color prob branch
        enc_out, _ = self.wildpath(src_seq, src_pos_seq, src_pad_mask)
        pal_logit = self.mid_word_prj(enc_out)
        pal_logit = pal_logit.permute(1, 2, 0).view(N,self.n_vocab,H,W)

        ## seed prob branch
        ## mask(N,1,H,W): sample anchors at clustering layers
        color_feat = enc_out.permute(1, 2, 0).view(N,C,H,W)
        hint_mask, cluster_mask = self.anchorGen(color_feat, n_anchors, spixel_sizes, use_sklearn_kmeans=False)
        pred_prob = torch.softmax(pal_logit, dim=1)
        color_feat2 = src_seq.permute(1, 2, 0).view(N,C,H,W)
        #pred_prob, adj_matrix = self.anchorGen._detect_correlation(color_feat, pred_prob, hint_mask, thres=0.1)
        if sampled_T < 0:
            ## GT anchor colors
            sampled_spix_colors = spix_colors
        elif sampled_T > 0:                
            top1_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=0)
            top2_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=1)
            top3_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=2)
            ## duplicate meta tensors
            sampled_spix_colors = torch.cat((top1_spix_colors,top2_spix_colors,top3_spix_colors), dim=0)
            N = 3*N
            input_grays = input_grays.expand(N,-1,-1,-1)
            hint_mask = hint_mask.expand(N,-1,-1,-1)
            affinity_map = affinity_map.expand(N,-1,-1,-1)
            src_seq = src_seq.expand(-1, N,-1)
            src_pos_seq = src_pos_seq.expand(-1, N,-1)
        else:
            sampled_spix_colors = self.anchorGen._sample_anchor_colors(pred_prob, hint_mask, T=sampled_T)
        ## debug: controllable
        if False:
            hint_mask, sampled_spix_colors = basic.io_user_control(hint_mask, spix_colors, output=False)

        sampled_token_labels = torch.max(self.colorLabeler.encode_ab2ind(sampled_spix_colors), dim=1, keepdim=True)[1]
                
        ## hint based prediction
        ## (N,C,H,W) -> (HW,N,C)
        mask_seq = hint_mask.flatten(2).permute(2, 0, 1)
        if self.hint2regress:
            spix_colors_ = sampled_spix_colors
            gt_seq = spix_colors_.flatten(2).permute(2, 0, 1)
            hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * gt_seq, mask_seq], dim=2))
            dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask)
        else:
            token_labels_ = sampled_token_labels
            label_map = F.one_hot(token_labels_, num_classes=313).squeeze(1).float()
            label_seq = label_map.permute(0, 3, 1, 2).flatten(2).permute(2, 0, 1)
            hint_seq = self.trg_word_emb(torch.cat([src_seq, mask_seq * label_seq, mask_seq], dim=2))
            dec_out, _ = self.hintpath(hint_seq, src_pos_seq, src_pad_mask)
        ref_logit = self.trg_word_prj(dec_out)
        Ct = 2 if self.hint2regress else self.n_vocab
        ref_logit = ref_logit.permute(1, 2, 0).view(N,Ct,H,W)
        
        ## pixelwise enhancement
        pred_colors = None
        if self.enhanced:
            proc_feats = dec_out.permute(1, 2, 0).view(N,64,H,W)
            full_feats = basic.upfeat(proc_feats, affinity_map, self.sp_size, self.sp_size)
            pred_colors = self.enhanceNet(torch.cat((input_grays,full_feats), dim=1))
            pred_colors = torch.tanh(pred_colors)

        return pal_logit, ref_logit, pred_colors, affinity_map, spix_colors, hint_mask