File size: 22,581 Bytes
98c5805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as spectral_norm
from torch.autograd import Function
from utils import util, cielab
import cv2, math, random

def tensor2array(tensors):
    arrays = tensors.detach().to("cpu").numpy()
    return np.transpose(arrays, (0, 2, 3, 1))


def rgb2gray(color_batch):
    #! gray = 0.299*R+0.587*G+0.114*B
    gray_batch = color_batch[:, 0, ...] * 0.299 + color_batch[:, 1, ...] * 0.587 + color_batch[:, 2, ...] * 0.114
    gray_batch = gray_batch.unsqueeze_(1)
    return gray_batch


def getParamsAmount(model):
    params = list(model.parameters())
    count = 0
    for var in params:
        l = 1
        for j in var.size():
            l *= j
        count += l
    return count


def checkAverageGradient(model):
    meanGrad, cnt = 0.0, 0
    for name, parms in model.named_parameters():
        if parms.requires_grad:
            meanGrad += torch.mean(torch.abs(parms.grad))
            cnt += 1
    return meanGrad.item() / cnt


def get_random_mask(N, H, W, minNum, maxNum):
    binary_maps = np.zeros((N, H*W), np.float32)
    for i in range(N):
        locs = random.sample(range(0, H*W), random.randint(minNum,maxNum))
        binary_maps[i, locs] = 1
    return binary_maps.reshape(N,1,H,W)


def io_user_control(hint_mask, spix_colors, output=True):
    cache_dir = '/apdcephfs/private_richardxia'
    if output:
        print('--- data saving')
        mask_imgs = tensor2array(hint_mask) * 2.0 - 1.0
        util.save_images_from_batch(mask_imgs, cache_dir, ['mask.png'], -1)
        fake_gray = torch.zeros_like(spix_colors[:,[0],:,:])
        spix_labs = torch.cat((fake_gray,spix_colors), dim=1)
        spix_imgs = tensor2array(spix_labs)
        util.save_normLabs_from_batch(spix_imgs, cache_dir, ['color.png'], -1)
        return hint_mask, spix_colors
    else:
        print('--- data loading')
        mask_img = cv2.imread(cache_dir+'/mask.png', cv2.IMREAD_GRAYSCALE)
        mask_img = np.expand_dims(mask_img, axis=2) / 255.
        hint_mask = torch.from_numpy(mask_img.transpose((2, 0, 1)))
        hint_mask = hint_mask.unsqueeze(0).cuda()
        bgr_img = cv2.imread(cache_dir+'/color.png', cv2.IMREAD_COLOR)
        rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
        rgb_img = np.array(rgb_img / 255., np.float32)
        lab_img = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2LAB)
        lab_img = torch.from_numpy(lab_img.transpose((2, 0, 1)))
        ab_chans = lab_img[1:3,:,:] / 110.
        spix_colors = ab_chans.unsqueeze(0).cuda()
        return hint_mask.float(), spix_colors.float()


class Quantize(Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        y = x.round()
        return y

    @staticmethod
    def backward(ctx, grad_output):
        """
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        inputX = ctx.saved_tensors
        return grad_output


def mark_color_hints(input_grays, target_ABs, gate_maps, kernel_size=3, base_ABs=None):
    ## to highlight the seeds with 1-pixel margin
    binary_map = torch.where(gate_maps>0.7, torch.ones_like(gate_maps), torch.zeros_like(gate_maps))
    center_mask = dilate_seeds(binary_map, kernel_size=kernel_size)
    margin_mask = dilate_seeds(binary_map, kernel_size=kernel_size+2) - center_mask
    ## drop colors
    dilated_seeds = dilate_seeds(gate_maps, kernel_size=kernel_size+2)
    marked_grays = torch.where(margin_mask > 1e-5, torch.ones_like(gate_maps), input_grays)
    if base_ABs is None:
        marked_ABs = torch.where(center_mask < 1e-5, torch.zeros_like(target_ABs), target_ABs)
    else:
        marked_ABs = torch.where(margin_mask > 1e-5, torch.zeros_like(base_ABs), base_ABs)
        marked_ABs = torch.where(center_mask > 1e-5, target_ABs, marked_ABs)
    return torch.cat((marked_grays,marked_ABs), dim=1)

def dilate_seeds(gate_maps, kernel_size=3):
    N,C,H,W = gate_maps.shape
    input_unf = F.unfold(gate_maps, kernel_size, padding=kernel_size//2)
    #! Notice: differentiable? just like max pooling?
    dilated_seeds, _ = torch.max(input_unf, dim=1, keepdim=True)
    output = F.fold(dilated_seeds, output_size=(H,W), kernel_size=1)
    #print('-------', input_unf.shape)
    return output


class RebalanceLoss(Function):
    @staticmethod
    def forward(ctx, data_input, weights):
        ctx.save_for_backward(weights)
        return data_input.clone()

    @staticmethod
    def backward(ctx, grad_output):
        weights, = ctx.saved_tensors
        # reweigh gradient pixelwise so that rare colors get a chance to
        # contribute
        grad_input = grad_output * weights
        # second return value is None since we are not interested in the
        # gradient with respect to the weights
        return grad_input, None


class GetClassWeights:
    def __init__(self, cielab, lambda_=0.5, device='cuda'):
        prior = torch.from_numpy(cielab.gamut.prior).cuda()
        uniform = torch.zeros_like(prior)
        uniform[prior > 0] = 1 / (prior > 0).sum().type_as(uniform)
        self.weights = 1 / ((1 - lambda_) * prior + lambda_ * uniform)
        self.weights /= torch.sum(prior * self.weights)

    def __call__(self, ab_actual):
        return self.weights[ab_actual.argmax(dim=1, keepdim=True)]


class ColorLabel:
    def __init__(self, lambda_=0.5, device='cuda'):
        self.cielab = cielab.CIELAB()
        self.q_to_ab = torch.from_numpy(self.cielab.q_to_ab).to(device)
        prior = torch.from_numpy(self.cielab.gamut.prior).to(device)
        uniform = torch.zeros_like(prior)
        uniform[prior>0] = 1 / (prior>0).sum().type_as(uniform)
        self.weights = 1 / ((1-lambda_) * prior + lambda_ * uniform)
        self.weights /= torch.sum(prior * self.weights)

    def visualize_label(self, step=3):
        height, width = 200, 313*step
        label_lab = np.ones((height,width,3), np.float32)
        for x in range(313):
            ab = self.cielab.q_to_ab[x,:]
            label_lab[:,step*x:step*(x+1),1:] = ab / 110.
        label_lab[:,:,0] = np.zeros((height,width), np.float32)
        return label_lab

    @staticmethod
    def _gauss_eval(x, mu, sigma):
        norm = 1 / (2 * math.pi * sigma)
        return norm * torch.exp(-torch.sum((x - mu)**2, dim=0) / (2 * sigma**2))
    
    def get_classweights(self, batch_gt_indx):
        #return self.weights[batch_gt_q.argmax(dim=1, keepdim=True)]
        return self.weights[batch_gt_indx]

    def encode_ab2ind(self, batch_ab, neighbours=5, sigma=5.0):
        batch_ab = batch_ab * 110.
        n, _, h, w = batch_ab.shape
        m = n * h * w
        # find nearest neighbours
        ab_ = batch_ab.permute(1, 0, 2, 3).reshape(2, -1) # (2, n*h*w) 
        cdist = torch.cdist(self.q_to_ab, ab_.t())
        nns = cdist.argsort(dim=0)[:neighbours, :]
        # gaussian weighting
        nn_gauss = batch_ab.new_zeros(neighbours, m)
        for i in range(neighbours):
            nn_gauss[i, :] = self._gauss_eval(self.q_to_ab[nns[i, :], :].t(), ab_, sigma)
        nn_gauss /= nn_gauss.sum(dim=0, keepdim=True)
        # expand
        bins = self.cielab.gamut.EXPECTED_SIZE
        q = batch_ab.new_zeros(bins, m)
        q[nns, torch.arange(m).repeat(neighbours, 1)] = nn_gauss        
        return q.reshape(bins, n, h, w).permute(1, 0, 2, 3)

    def decode_ind2ab(self, batch_q, T=0.38):
        _, _, h, w = batch_q.shape
        batch_q = F.softmax(batch_q, dim=1)
        if T%1 == 0:
            # take the T-st probable index
            sorted_probs, batch_indexs = torch.sort(batch_q, dim=1, descending=True)
            #print('checking [index]', batch_indexs[:,0:5,5,5])
            #print('checking [probs]', sorted_probs[:,0:5,5,5])
            batch_indexs = batch_indexs[:,T:T+1,:,:]
            #batch_indexs = torch.where(sorted_probs[:,T:T+1,:,:] > 0.25, batch_indexs[:,T:T+1,:,:], batch_indexs[:,0:1,:,:])
            ab = torch.stack([
                self.q_to_ab.index_select(0, q_i.flatten()).reshape(h,w,2).permute(2,0,1)
                for q_i in batch_indexs])
        else:
            batch_q = torch.exp(batch_q / T)
            batch_q /= batch_q.sum(dim=1, keepdim=True)
            a = torch.tensordot(batch_q, self.q_to_ab[:,0], dims=((1,), (0,)))
            a = a.unsqueeze(dim=1)
            b = torch.tensordot(batch_q, self.q_to_ab[:,1], dims=((1,), (0,)))
            b = b.unsqueeze(dim=1)
            ab = torch.cat((a, b), dim=1)
        ab = ab / 110.
        return ab.type(batch_q.dtype)


def init_spixel_grid(img_height, img_width, spixel_size=16):
    # get spixel id for the final assignment
    n_spixl_h = int(np.floor(img_height/spixel_size))
    n_spixl_w = int(np.floor(img_width/spixel_size))
    spixel_height = int(img_height / (1. * n_spixl_h))
    spixel_width = int(img_width / (1. * n_spixl_w))
    spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w)))
    
    def shift9pos(input, h_shift_unit=1, w_shift_unit=1):
        # input should be padding as (c, 1+ height+1, 1+width+1)
        input_pd = np.pad(input, ((h_shift_unit, h_shift_unit), (w_shift_unit, w_shift_unit)), mode='edge')
        input_pd = np.expand_dims(input_pd, axis=0)
        # assign to ...
        top     = input_pd[:, :-2 * h_shift_unit,          w_shift_unit:-w_shift_unit]
        bottom  = input_pd[:, 2 * h_shift_unit:,           w_shift_unit:-w_shift_unit]
        left    = input_pd[:, h_shift_unit:-h_shift_unit,  :-2 * w_shift_unit]
        right   = input_pd[:, h_shift_unit:-h_shift_unit,  2 * w_shift_unit:]
        center = input_pd[:,h_shift_unit:-h_shift_unit,w_shift_unit:-w_shift_unit]
        bottom_right    = input_pd[:, 2 * h_shift_unit:,   2 * w_shift_unit:]
        bottom_left     = input_pd[:, 2 * h_shift_unit:,   :-2 * w_shift_unit]
        top_right       = input_pd[:, :-2 * h_shift_unit,  2 * w_shift_unit:]
        top_left        = input_pd[:, :-2 * h_shift_unit,  :-2 * w_shift_unit]
        shift_tensor = np.concatenate([     top_left,    top,      top_right,
                                            left,        center,      right,
                                            bottom_left, bottom,    bottom_right], axis=0)
        return shift_tensor

    spix_idx_tensor_ = shift9pos(spix_values)
    spix_idx_tensor = np.repeat(
        np.repeat(spix_idx_tensor_, spixel_height, axis=1), spixel_width, axis=2)
    spixel_id_tensor = torch.from_numpy(spix_idx_tensor).type(torch.float)

    #! pixel coord feature maps
    all_h_coords = np.arange(0, img_height, 1)
    all_w_coords = np.arange(0, img_width, 1)
    curr_pxl_coord = np.array(np.meshgrid(all_h_coords, all_w_coords, indexing='ij'))
    coord_feat_tensor = np.concatenate([curr_pxl_coord[1:2, :, :], curr_pxl_coord[:1, :, :]])
    coord_feat_tensor = torch.from_numpy(coord_feat_tensor).type(torch.float)

    return spixel_id_tensor, coord_feat_tensor


def split_spixels(assign_map, spixel_ids):
    N,C,H,W = assign_map.shape
    spixel_id_map = spixel_ids.expand(N,-1,-1,-1)
    assig_max,_ = torch.max(assign_map, dim=1, keepdim=True)
    assignment_ = torch.where(assign_map == assig_max, torch.ones(assign_map.shape).cuda(),torch.zeros(assign_map.shape).cuda())
    ## winner take all
    new_spixl_map_ = spixel_id_map * assignment_
    new_spixl_map = torch.sum(new_spixl_map_,dim=1,keepdim=True).type(torch.int)
    return new_spixl_map


def poolfeat(input, prob, sp_h=2, sp_w=2, need_entry_prob=False):
    def feat_prob_sum(feat_sum, prob_sum, shift_feat):
        feat_sum += shift_feat[:, :-1, :, :]
        prob_sum += shift_feat[:, -1:, :, :]
        return feat_sum, prob_sum
    
    b, _, h, w = input.shape
    h_shift_unit = 1
    w_shift_unit = 1
    p2d = (w_shift_unit, w_shift_unit, h_shift_unit, h_shift_unit)
    feat_ = torch.cat([input, torch.ones([b, 1, h, w], device=input.device)], dim=1)  # b* (n+1) *h*w
    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 0, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w)) # b * (n+1) * h* w
    send_to_top_left =  F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, 2 * h_shift_unit:, 2 * w_shift_unit:]
    feat_sum = send_to_top_left[:, :-1, :, :].clone()
    prob_sum = send_to_top_left[:, -1:, :, :].clone()

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 1, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    top = F.pad(prob_feat, p2d, mode='constant', value=0)[:,  :, 2 * h_shift_unit:, w_shift_unit:-w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 2, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    top_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:,  :, 2 * h_shift_unit:, :-2 * w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, top_right)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 3, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    left = F.pad(prob_feat, p2d, mode='constant', value=0)[:,  :, h_shift_unit:-h_shift_unit, 2 * w_shift_unit:]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, left)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 4, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    center = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, h_shift_unit:-h_shift_unit, w_shift_unit:-w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, center)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 5, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    right = F.pad(prob_feat, p2d, mode='constant', value=0)[:,  :, h_shift_unit:-h_shift_unit, :-2 * w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, right)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 6, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    bottom_left = F.pad(prob_feat, p2d, mode='constant', value=0)[:,  :, :-2 * h_shift_unit, 2 * w_shift_unit:]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_left)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 7, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    bottom = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, w_shift_unit:-w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom)

    prob_feat = F.avg_pool2d(feat_ * prob.narrow(1, 8, 1), kernel_size=(sp_h, sp_w), stride=(sp_h, sp_w))  # b * (n+1) * h* w
    bottom_right = F.pad(prob_feat, p2d, mode='constant', value=0)[:, :, :-2 * h_shift_unit, :-2 * w_shift_unit]
    feat_sum, prob_sum = feat_prob_sum(feat_sum, prob_sum, bottom_right)
    pooled_feat = feat_sum / (prob_sum + 1e-8)
    if need_entry_prob:
        return pooled_feat, prob_sum
    return pooled_feat


def get_spixel_size(affinity_map, sp_h=2, sp_w=2, elem_thres=25):
    N,C,H,W = affinity_map.shape
    device = affinity_map.device
    assign_max,_ = torch.max(affinity_map, dim=1, keepdim=True)
    assign_map = torch.where(affinity_map==assign_max, torch.ones(affinity_map.shape, device=device), torch.zeros(affinity_map.shape, device=device))
    ## one_map = (N,1,H,W)
    _, elem_num_maps = poolfeat(torch.ones(assign_max.shape, device=device), assign_map, sp_h, sp_w, True)
    #all_one_map = torch.ones(elem_num_maps.shape).cuda()
    #empty_mask = torch.where(elem_num_maps < elem_thres/256, all_one_map, 1-all_one_map)
    return elem_num_maps
    

def upfeat(input, prob, up_h=2, up_w=2):
    # input b*n*H*W  downsampled
    # prob b*9*h*w
    b, c, h, w = input.shape

    h_shift = 1
    w_shift = 1

    p2d = (w_shift, w_shift, h_shift, h_shift)
    feat_pd = F.pad(input, p2d, mode='constant', value=0)

    gt_frm_top_left = F.interpolate(feat_pd[:, :, :-2 * h_shift, :-2 * w_shift], size=(h * up_h, w * up_w),mode='nearest')
    feat_sum = gt_frm_top_left * prob.narrow(1,0,1)

    top = F.interpolate(feat_pd[:, :, :-2 * h_shift, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += top * prob.narrow(1, 1, 1)

    top_right = F.interpolate(feat_pd[:, :, :-2 * h_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += top_right * prob.narrow(1,2,1)

    left = F.interpolate(feat_pd[:, :, h_shift:-w_shift, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += left * prob.narrow(1, 3, 1)

    center = F.interpolate(input, (h * up_h, w * up_w), mode='nearest')
    feat_sum += center * prob.narrow(1, 4, 1)

    right = F.interpolate(feat_pd[:, :, h_shift:-w_shift, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += right * prob.narrow(1, 5, 1)

    bottom_left = F.interpolate(feat_pd[:, :, 2 * h_shift:, :-2 * w_shift], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += bottom_left * prob.narrow(1, 6, 1)

    bottom = F.interpolate(feat_pd[:, :, 2 * h_shift:, w_shift:-w_shift], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += bottom * prob.narrow(1, 7, 1)

    bottom_right =  F.interpolate(feat_pd[:, :, 2 * h_shift:, 2 * w_shift:], size=(h * up_h, w * up_w), mode='nearest')
    feat_sum += bottom_right * prob.narrow(1, 8, 1)

    return feat_sum


def suck_and_spread(self, base_maps, seg_layers):
    N,S,H,W = seg_layers.shape
    base_maps = base_maps.unsqueeze(1)
    seg_layers = seg_layers.unsqueeze(2)
    ## (N,S,C,1,1) = (N,1,C,H,W) * (N,S,1,H,W)
    mean_val_layers = (base_maps * seg_layers).sum(dim=(3,4), keepdim=True) / (1e-5 + seg_layers.sum(dim=(3,4), keepdim=True))
    ## normalized to be sum one
    weight_layers = seg_layers / (1e-5 + torch.sum(seg_layers, dim=1, keepdim=True))
    ## (N,S,C,H,W) = (N,S,C,1,1) * (N,S,1,H,W)
    recon_maps = mean_val_layers * weight_layers
    return recon_maps.sum(dim=1)


#! copy from Richard Zhang [SIGGRAPH2017]
# RGB grid points maps to Lab range: L[0,100], a[-86.183,98,233], b[-107.857,94.478]
#------------------------------------------------------------------------------
def rgb2xyz(rgb):  # rgb from [0,1]
    # xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
        #  [0.212671, 0.715160, 0.072169],
        #  [0.019334, 0.119193, 0.950227]])
    mask = (rgb > .04045).type(torch.FloatTensor)
    if(rgb.is_cuda):
        mask = mask.cuda()
    rgb = (((rgb+.055)/1.055)**2.4)*mask + rgb/12.92*(1-mask)
    x = .412453*rgb[:,0,:,:]+.357580*rgb[:,1,:,:]+.180423*rgb[:,2,:,:]
    y = .212671*rgb[:,0,:,:]+.715160*rgb[:,1,:,:]+.072169*rgb[:,2,:,:]
    z = .019334*rgb[:,0,:,:]+.119193*rgb[:,1,:,:]+.950227*rgb[:,2,:,:]
    out = torch.cat((x[:,None,:,:],y[:,None,:,:],z[:,None,:,:]),dim=1)
    return out

def xyz2rgb(xyz):
    # array([[ 3.24048134, -1.53715152, -0.49853633],
    #        [-0.96925495,  1.87599   ,  0.04155593],
    #        [ 0.05564664, -0.20404134,  1.05731107]])
    r = 3.24048134*xyz[:,0,:,:]-1.53715152*xyz[:,1,:,:]-0.49853633*xyz[:,2,:,:]
    g = -0.96925495*xyz[:,0,:,:]+1.87599*xyz[:,1,:,:]+.04155593*xyz[:,2,:,:]
    b = .05564664*xyz[:,0,:,:]-.20404134*xyz[:,1,:,:]+1.05731107*xyz[:,2,:,:]
    rgb = torch.cat((r[:,None,:,:],g[:,None,:,:],b[:,None,:,:]),dim=1)
    #! sometimes reaches a small negative number, which causes NaNs
    rgb = torch.max(rgb,torch.zeros_like(rgb))
    mask = (rgb > .0031308).type(torch.FloatTensor)
    if(rgb.is_cuda):
        mask = mask.cuda()
    rgb = (1.055*(rgb**(1./2.4)) - 0.055)*mask + 12.92*rgb*(1-mask)
    return rgb

def xyz2lab(xyz):
    # 0.95047, 1., 1.08883 # white
    sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
    if(xyz.is_cuda):
        sc = sc.cuda()
    xyz_scale = xyz/sc
    mask = (xyz_scale > .008856).type(torch.FloatTensor)
    if(xyz_scale.is_cuda):
        mask = mask.cuda()
    xyz_int = xyz_scale**(1/3.)*mask + (7.787*xyz_scale + 16./116.)*(1-mask)
    L = 116.*xyz_int[:,1,:,:]-16.
    a = 500.*(xyz_int[:,0,:,:]-xyz_int[:,1,:,:])
    b = 200.*(xyz_int[:,1,:,:]-xyz_int[:,2,:,:])
    out = torch.cat((L[:,None,:,:],a[:,None,:,:],b[:,None,:,:]),dim=1)
    return out

def lab2xyz(lab):
    y_int = (lab[:,0,:,:]+16.)/116.
    x_int = (lab[:,1,:,:]/500.) + y_int
    z_int = y_int - (lab[:,2,:,:]/200.)
    if(z_int.is_cuda):
        z_int = torch.max(torch.Tensor((0,)).cuda(), z_int)
    else:
        z_int = torch.max(torch.Tensor((0,)), z_int)
    out = torch.cat((x_int[:,None,:,:],y_int[:,None,:,:],z_int[:,None,:,:]),dim=1)
    mask = (out > .2068966).type(torch.FloatTensor)
    if(out.is_cuda):
        mask = mask.cuda()
    out = (out**3.)*mask + (out - 16./116.)/7.787*(1-mask)
    sc = torch.Tensor((0.95047, 1., 1.08883))[None,:,None,None]
    sc = sc.to(out.device)
    out = out*sc
    return out

def rgb2lab(rgb, l_mean=50, l_norm=50, ab_norm=110):
    #! input rgb: [0,1]
    #! output lab: [-1,1]
    lab = xyz2lab(rgb2xyz(rgb))
    l_rs = (lab[:,[0],:,:]-l_mean) / l_norm
    ab_rs = lab[:,1:,:,:] / ab_norm
    out = torch.cat((l_rs,ab_rs),dim=1)
    return out
    
def lab2rgb(lab_rs, l_mean=50, l_norm=50, ab_norm=110):
    #! input lab: [-1,1]
    #! output rgb: [0,1]
    l_ = lab_rs[:,[0],:,:] * l_norm + l_mean
    ab = lab_rs[:,1:,:,:] * ab_norm
    lab = torch.cat((l_,ab), dim=1)
    out = xyz2rgb(lab2xyz(lab))
    return out


if __name__ == '__main__':
    minL, minA, minB = 999., 999., 999.
    maxL, maxA, maxB = 0., 0., 0.
    for r in range(256):
        print('h',r)
        for g in range(256):
            for b in range(256):
                rgb = np.array([r,g,b], np.float32).reshape(1,1,-1) / 255.0
                #lab_img = cv2.cvtColor(rgb, cv2.COLOR_RGB2LAB)
                rgb = torch.from_numpy(rgb.transpose((2, 0, 1)))
                rgb = rgb.reshape(1,3,1,1)
                lab = rgb2lab(rgb)
                lab[:,[0],:,:] = lab[:,[0],:,:] * 50 + 50
                lab[:,1:,:,:] = lab[:,1:,:,:] * 110
                lab = lab.squeeze()
                lab_float = lab.numpy()
                #print('zhang vs. cv2:', lab_float, lab_img.squeeze())
                minL = min(lab_float[0], minL)
                minA = min(lab_float[1], minA)
                minB = min(lab_float[2], minB)
                maxL = max(lab_float[0], maxL)
                maxA = max(lab_float[1], maxA)
                maxB = max(lab_float[2], maxB)
    print('L:', minL, maxL)
    print('A:', minA, maxA)
    print('B:', minB, maxB)