File size: 14,064 Bytes
e4f9cbe
 
55dc3dd
e4f9cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a1c18
e4f9cbe
 
 
 
 
 
 
 
 
e9a1c18
e4f9cbe
 
 
e9a1c18
 
 
e4f9cbe
 
 
 
 
 
 
e9a1c18
e4f9cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a1c18
 
e4f9cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a1c18
 
e4f9cbe
e9a1c18
 
 
 
 
 
e4f9cbe
e9a1c18
 
e4f9cbe
e9a1c18
e4f9cbe
 
 
 
e9a1c18
e4f9cbe
e9a1c18
e4f9cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55dc3dd
 
 
 
e4f9cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a1c18
 
 
 
 
 
 
 
e4f9cbe
 
 
 
 
e9a1c18
 
e4f9cbe
 
e9a1c18
 
 
 
e4f9cbe
 
 
 
 
 
e9a1c18
 
 
 
 
 
 
 
 
 
cf614fd
 
e9a1c18
 
cf614fd
e9a1c18
cf614fd
e9a1c18
cf614fd
e9a1c18
 
 
 
 
 
cf614fd
 
e9a1c18
 
 
cf614fd
 
 
 
 
 
e9a1c18
 
cf614fd
e9a1c18
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
"""Utilities for working with datasets."""

import json
import math
import os
import pickle
import pprint
import secrets
from collections.abc import Iterable
from typing import Any, Callable, Generator, Iterator, Optional, Sequence, TypeVar, Union, cast

import numpy as np
import pyarrow as pa

from ..parquet_writer import ParquetWriter
from ..schema import (
  PATH_WILDCARD,
  TEXT_SPAN_END_FEATURE,
  TEXT_SPAN_START_FEATURE,
  UUID_COLUMN,
  VALUE_KEY,
  Field,
  Item,
  PathTuple,
  Schema,
  VectorKey,
  field,
  schema,
  schema_to_arrow_schema,
)
from ..signals.signal import EMBEDDING_KEY, Signal
from ..utils import file_exists, log, open_file

_KEYS_SUFFIX = '.keys.pkl'
_EMBEDDINGS_SUFFIX = '.npy'


def is_primitive(obj: object) -> bool:
  """Returns True if the object is a primitive."""
  if isinstance(obj, (str, bytes, np.ndarray, int, float)):
    return True
  if isinstance(obj, Iterable):
    return False
  return True


def _replace_embeddings_with_none(input: Union[Item, Item]) -> Union[Item, Item]:
  if isinstance(input, np.ndarray):
    return None
  if isinstance(input, dict):
    return {k: _replace_embeddings_with_none(v) for k, v in input.items()}
  if isinstance(input, list):
    return [_replace_embeddings_with_none(v) for v in input]

  return input


def replace_embeddings_with_none(input: Union[Item, Item]) -> Item:
  """Replaces all embeddings with None."""
  return cast(Item, _replace_embeddings_with_none(input))


def lilac_span(start: int, end: int, metadata: dict[str, Any] = {}) -> Item:
  """Creates a lilac span item, representing a pointer to a slice of text."""
  return {VALUE_KEY: {TEXT_SPAN_START_FEATURE: start, TEXT_SPAN_END_FEATURE: end}, **metadata}


def lilac_embedding(start: int, end: int, embedding: Optional[np.ndarray]) -> Item:
  """Creates a lilac embedding item, representing a vector with a pointer to a slice of text."""
  return lilac_span(start, end, {EMBEDDING_KEY: embedding})


Tflatten = TypeVar('Tflatten', object, np.ndarray)


def _flatten(input: Union[Iterator, object], is_primitive_predicate: Callable[[object],
                                                                              bool]) -> Generator:
  """Flattens a nested iterable."""
  if is_primitive_predicate(input):
    yield input
  elif isinstance(input, dict):
    yield input
  elif is_primitive(input):
    yield input
  else:
    for elem in cast(Iterator, input):
      yield from _flatten(elem, is_primitive_predicate)


def flatten(input: Union[Iterator, Iterable, Tflatten],
            is_primitive_predicate: Callable[[object], bool] = is_primitive) -> Iterator[Tflatten]:
  """Flattens a nested iterator.

  Primitives and dictionaries are not flattened. The user can also provide a predicate to determine
  what is a primitive.
  """
  return _flatten(input, is_primitive_predicate)


def count_primitives(input: Union[Iterable, Iterator]) -> int:
  """Iterate through each element of the input, flattening each one, computing a count.

  Sum the final set of counts. This is the important iterable not to exhaust.
  """
  return sum((len(list(flatten(i))) for i in input))


def _wrap_value_in_dict(input: Union[object, dict], props: PathTuple) -> Union[object, dict]:
  # If the signal produced no value, or nan, we should return None so the parquet value is sparse.
  if isinstance(input, float) and math.isnan(input):
    input = None
  for prop in reversed(props):
    input = {prop: input}
  return input


def _unflatten(flat_input: Iterator[list[object]],
               original_input: Union[Iterable, object]) -> Union[list, dict]:
  """Unflattens a flattened iterable according to the original iterable's structure."""
  if is_primitive(original_input):
    return next(flat_input)
  else:
    values: Iterable
    if isinstance(original_input, dict):
      values = original_input.values()
    else:
      values = cast(Iterable, original_input)
    return [_unflatten(flat_input, orig_elem) for orig_elem in values]


def unflatten(flat_input: Union[Iterable, Iterator], original_input: Union[Iterable,
                                                                           object]) -> list:
  """Unflattens a flattened iterable according to the original iterable's structure."""
  return cast(list, _unflatten(iter(flat_input), original_input))


def _wrap_in_dicts(input: Union[object, Iterable[object]],
                   spec: list[PathTuple]) -> Union[object, Iterable[object]]:
  """Wraps an object or iterable in a dict according to the spec."""
  props = spec[0] if spec else tuple()
  if len(spec) == 1:
    return _wrap_value_in_dict(input, props)
  if input is None or isinstance(input, float) and math.isnan(input):
    # Return empty dict for missing inputs.
    return {}
  res = [_wrap_in_dicts(elem, spec[1:]) for elem in cast(Iterable, input)]
  return _wrap_value_in_dict(res, props)


def wrap_in_dicts(input: Iterable[object], spec: list[PathTuple]) -> Iterable[object]:
  """Wraps an object or iterable in a dict according to the spec."""
  return [_wrap_in_dicts(elem, spec) for elem in input]


def _merge_field_into(schema: Field, destination: Field) -> None:
  if isinstance(schema, Field):
    destination.signal = destination.signal or schema.signal
    destination.dtype = destination.dtype or schema.dtype
  if schema.fields:
    destination.fields = destination.fields or {}
    for field_name, subfield in schema.fields.items():
      if field_name not in destination.fields:
        destination.fields[field_name] = subfield.copy(deep=True)
      else:
        _merge_field_into(subfield, destination.fields[field_name])
  elif schema.repeated_field:
    if not destination.repeated_field:
      raise ValueError('Failed to merge schemas. Origin schema is repeated, but destination is not')
    _merge_field_into(schema.repeated_field, destination.repeated_field)
  else:
    if destination.dtype != schema.dtype:
      raise ValueError(f'Failed to merge schemas. Origin schema has dtype {schema.dtype}, '
                       f'but destination has dtype {destination.dtype}')


def merge_schemas(schemas: Sequence[Union[Schema, Field]]) -> Schema:
  """Merge a list of schemas."""
  merged_schema = Schema(fields={})
  for s in schemas:
    _merge_field_into(cast(Field, s), cast(Field, merged_schema))
  return merged_schema


def schema_contains_path(schema: Schema, path: PathTuple) -> bool:
  """Check if a schema contains a path."""
  current_field = cast(Field, schema)
  for path_part in path:
    # When we reach a value key, the schema should have a dtype defined on it. If not, it is derived
    # and this schema does not contain the value.
    if path_part == VALUE_KEY:
      return current_field.dtype is not None

    if path_part == PATH_WILDCARD:
      if current_field.repeated_field is None:
        return False
      current_field = current_field.repeated_field
    else:
      if current_field.fields is None or path_part not in current_field.fields:
        return False
      current_field = current_field.fields[str(path_part)]
  return True


def create_signal_schema(signal: Signal, source_path: PathTuple, current_schema: Schema) -> Schema:
  """Create a schema describing the enriched fields added an enrichment."""
  leafs = current_schema.leafs
  # Validate that the enrich fields are actually a valid leaf path.
  if source_path not in leafs:
    raise ValueError(f'"{source_path}" is not a valid leaf path. Leaf paths: {leafs.keys()}')

  signal_schema = signal.fields()
  signal_schema.signal = signal.dict()

  enriched_schema = field(fields={signal.key(is_computed_signal=True): signal_schema})

  for path_part in reversed(source_path):
    if path_part == PATH_WILDCARD:
      enriched_schema = Field(repeated_field=enriched_schema)
    else:
      enriched_schema = Field(fields={path_part: enriched_schema})

  if not enriched_schema.fields:
    raise ValueError('This should not happen since enriched_schema always has fields (see above)')

  return schema({UUID_COLUMN: 'string', **cast(dict, enriched_schema.fields)})


def write_item_embeddings_to_disk(keys: Iterable[str], embeddings: Iterable[object],
                                  output_dir: str, shard_index: int, num_shards: int) -> str:
  """Write a set of embeddings to disk."""
  output_path_prefix = embedding_index_filename_prefix(output_dir, shard_index, num_shards)

  # Restrict the keys to only those that are embeddings.
  def embedding_predicate(input: Any) -> bool:
    return isinstance(input, np.ndarray)

  flat_keys = flatten_keys(keys, embeddings, is_primitive_predicate=embedding_predicate)
  flat_embeddings = flatten(embeddings, is_primitive_predicate=embedding_predicate)

  embedding_vectors: list[np.ndarray] = []
  embedding_keys: list[VectorKey] = []
  for key, lilac_embedding in zip(flat_keys, flat_embeddings):
    if not key or not lilac_embedding or EMBEDDING_KEY not in lilac_embedding:
      # Sparse embeddings may not have an embedding for every key.
      continue

    # We use squeeze here because embedding functions can return outer dimensions of 1.
    embedding_vectors.append(lilac_embedding[EMBEDDING_KEY].reshape(-1))
    embedding_keys.append(key)

  embedding_vectors = np.array(embedding_vectors)

  # Write the embedding index and the ordered UUID column to disk so they can be joined later.

  with open_file(output_path_prefix + _EMBEDDINGS_SUFFIX, 'wb') as f:
    np.save(f, embedding_vectors, allow_pickle=False)
  with open_file(output_path_prefix + _KEYS_SUFFIX, 'wb') as f:
    pickle.dump(embedding_keys, f)

  return output_path_prefix


def read_embedding_index(filepath_prefix: str) -> tuple[list[VectorKey], np.ndarray]:
  """Reads the embedding index for a column from disk."""
  if not file_exists(filepath_prefix + _EMBEDDINGS_SUFFIX):
    raise ValueError(F'Embedding index does not exist at path {filepath_prefix}. '
                     'Please run dataset.compute_signal() on the embedding signal first.')

  # Read the embedding index from disk.
  embeddings = np.load(filepath_prefix + _EMBEDDINGS_SUFFIX, allow_pickle=False)
  with open_file(filepath_prefix + _KEYS_SUFFIX, 'rb') as f:
    index_keys: list[VectorKey] = pickle.load(f)
  return index_keys, embeddings


def write_items_to_parquet(items: Iterable[Item], output_dir: str, schema: Schema,
                           filename_prefix: str, shard_index: int,
                           num_shards: int) -> tuple[str, int]:
  """Write a set of items to a parquet file, in columnar format."""
  arrow_schema = schema_to_arrow_schema(schema)
  out_filename = parquet_filename(filename_prefix, shard_index, num_shards)
  filepath = os.path.join(output_dir, out_filename)
  f = open_file(filepath, mode='wb')
  writer = ParquetWriter(schema)
  writer.open(f)
  num_items = 0
  for item in items:
    # Add a UUID column.
    if UUID_COLUMN not in item:
      item[UUID_COLUMN] = secrets.token_urlsafe(nbytes=12)  # 16 base64 characters.
    if os.getenv('DEBUG'):
      try:
        _validate(item, arrow_schema)
      except Exception as e:
        raise ValueError(f'Error validating item: {json.dumps(item)}') from e
    writer.write(item)
    num_items += 1
  writer.close()
  f.close()
  return out_filename, num_items


def _validate(item: Item, schema: pa.Schema) -> None:
  # Try to parse the item using the inferred schema.
  try:
    pa.RecordBatch.from_pylist([item], schema=schema)
  except pa.ArrowTypeError:
    log('Failed to parse arrow item using the arrow schema.')
    log('Item:')
    log(pprint.pformat(item, indent=2))
    log('Arrow schema:')
    log(schema)
    raise  # Re-raise the same exception, same stacktrace.


def parquet_filename(prefix: str, shard_index: int, num_shards: int) -> str:
  """Return the filename for a parquet file."""
  return f'{prefix}-{shard_index:05d}-of-{num_shards:05d}.parquet'


def _flatten_keys(uuid: str, nested_input: Iterable, location: list[int],
                  is_primitive_predicate: Callable[[object], bool]) -> Iterator[VectorKey]:
  if is_primitive_predicate(nested_input) or is_primitive(nested_input) or isinstance(
      nested_input, dict):
    yield (uuid, *location)
    return

  for i, input in enumerate(nested_input):
    yield from _flatten_keys(uuid, input, [*location, i], is_primitive_predicate)


def flatten_keys(
    uuids: Iterable[str],
    nested_input: Iterable,
    is_primitive_predicate: Callable[[object],
                                     bool] = is_primitive) -> Iterator[Optional[VectorKey]]:
  """Flatten the uuid keys of a nested input."""
  for uuid, input in zip(uuids, nested_input):
    if input is None:
      yield None
      continue
    yield from _flatten_keys(uuid, input, [], is_primitive_predicate)


def embedding_index_filename_prefix(output_dir: str, shard_index: int, num_shards: int) -> str:
  """Return the filename prefix for the embedding index."""
  npy_filename = f'embeddings-{shard_index:05d}-of-{num_shards:05d}'
  return os.path.join(output_dir, npy_filename)


Tin = TypeVar('Tin')
Tout = TypeVar('Tout')


def sparse_to_dense_compute(
    sparse_input: Iterator[Optional[Tin]],
    func: Callable[[Iterable[Tin]], Iterable[Tout]]) -> Iterator[Optional[Tout]]:
  """Densifies the input before calling the provided `func` and sparsifies the output."""
  locations: list[int] = []
  total_size: int = 0

  def densify(x: Iterator[Optional[Tin]]) -> Iterator[Tin]:
    nonlocal locations, total_size
    for i, value in enumerate(x):
      total_size += 1
      if value is not None:
        locations.append(i)
        yield value

  dense_input = densify(sparse_input)
  dense_output = iter(func(dense_input))
  index = 0

  location_index = 0

  while True:
    try:
      out = next(dense_output)
      out_index = locations[location_index]
      while index < out_index:
        yield None
        index += 1
      yield out
      location_index += 1
      index += 1
    except StopIteration:
      while index < total_size:
        yield None
        index += 1
      return