Spaces:
Runtime error
Runtime error
File size: 8,496 Bytes
ddf7523 27df543 acec199 27df543 ddf7523 a3f4230 27df543 a3f4230 27df543 a3f4230 27df543 a3f4230 27df543 7a5c0ef 27df543 a3f4230 27df543 ddf7523 27df543 ddf7523 27df543 a3f4230 27df543 a3f4230 27df543 a3f4230 27df543 a3f4230 27df543 ddf7523 27df543 ddf7523 27df543 ddf7523 27df543 ddf7523 27df543 ddf7523 27df543 a3f4230 27df543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""Lilac deployer streamlit UI.
This powers: https://huggingface.co/spaces/lilacai/lilac_deployer
"""
from typing import Literal, Optional, Union
import lilac as ll
import streamlit as st
from datasets import load_dataset_builder
if 'current_page' not in st.session_state:
st.session_state.current_page = 'dataset'
query_params = st.experimental_get_query_params()
if 'dataset' in query_params:
st.session_state.hf_dataset_name = query_params['dataset'][0]
def _dataset_page():
is_valid_dataset = False
st.header('Deploy Lilac for a HuggingFace dataset to a space', anchor=False)
st.subheader(
'Step 1: select a dataset',
divider='violet',
anchor=False,
help='For a list of datasets see: https://huggingface.co/datasets',
)
hf_dataset_name = st.text_input(
'dataset id',
help='Either in the format `user/dataset` or `dataset`, for example: `Open-Orca/OpenOrca`',
placeholder='dataset or user/dataset',
value=st.session_state.get('hf_dataset_name', None),
)
with st.expander('advanced options'):
hf_config_name = st.text_input(
'config',
help='Some datasets required this field.',
placeholder='(optional)',
value=st.session_state.get('hf_config_name', None),
)
hf_split = st.text_input(
'split',
help='Loads all splits by default.',
placeholder='(optional)',
value=st.session_state.get('hf_split', None),
)
sample_size = st.number_input(
'sample size',
help='Number of rows to sample from the dataset, for each split.',
placeholder='(optional)',
min_value=1,
step=1,
key='sample_size',
value=st.session_state.get('sample_size', None),
)
hf_read_token = st.text_input(
'huggingface [read token](https://huggingface.co/settings/tokens)',
type='password',
help='The access token is used to authenticate you with HuggingFace to read the dataset. '
'https://huggingface.co/docs/hub/security-tokens',
placeholder='(optional if dataset is public)',
)
def _next():
st.session_state.current_page = 'space'
st.session_state.hf_dataset_name = hf_dataset_name
st.session_state.hf_config_name = hf_config_name
st.session_state.hf_split = hf_split
st.session_state.sample_size = sample_size
def _next_button():
enabled = is_valid_dataset
return st.button('Next', disabled=not enabled, type='primary', on_click=_next)
ds_builder = None
if hf_dataset_name:
is_valid_dataset = False
try:
ds_builder = load_dataset_builder(hf_dataset_name, name=hf_config_name, token=hf_read_token)
is_valid_dataset = True
except Exception as e:
st.session_state.ds_error = e
st.session_state.ds_loaded = False
st.session_state.hf_dataset_name = hf_dataset_name
_next_button()
if ds_builder:
st.session_state.ds_loaded = True
st.session_state.ds_error = None
st.session_state.ds_dataset_name = hf_dataset_name
st.session_state.ds_description = ds_builder.info.description
st.session_state.ds_features = ds_builder.info.features
st.session_state.ds_splits = ds_builder.info.splits
else:
st.session_state.ds_loaded = False
def _space_page():
session = dict(st.session_state)
def _back():
st.session_state.hf_space_name = hf_space_name
st.session_state.hf_storage = hf_storage
st.session_state.hf_access_token = hf_access_token
st.session_state.current_page = 'dataset'
hf_space_name = st.session_state.get('hf_space_name', None)
hf_storage = st.session_state.get('hf_storage', None)
hf_access_token = st.session_state.get('hf_access_token', None)
def _back_button():
return st.button('⬅ Back', on_click=_back)
_back_button()
st.subheader(
'Step 2: create huggingface space',
divider='violet',
anchor=False,
help='See HuggingFace Spaces [documentation](https://huggingface.co/docs/hub/spaces-overview)',
)
if session.get('hf_config_name', None):
st.write(f'Config: {session["hf_config_name"]}')
if st.session_state.get('hf_split', None):
st.write(f'Split: {session["hf_split"]}')
if st.session_state.get('sample_size', None):
st.write(f'Sample size: {session["sample_size"]}')
hf_space_name = st.text_input(
'space id',
help='This space will be created if it does not exist',
placeholder='org/name',
value=hf_space_name,
)
hf_access_token = st.text_input(
'huggingface [write token](https://huggingface.co/settings/tokens)',
type='password',
help='The access token is used to authenticate you with HuggingFace to create the space. '
'https://huggingface.co/docs/hub/security-tokens',
value=hf_access_token,
)
storage_options = ['None', 'small', 'medium', 'large']
hf_storage = st.selectbox(
'persistent storage',
['None', 'small', 'medium', 'large'],
help='Persistent storage is required if you want data to persist past the lifetime of the '
'space docker image. This is recommended when running computations like signals or embeddings,'
'or if you want labels to persist. You will get charged for persistent storage. See '
'https://huggingface.co/docs/hub/spaces-storage',
index=storage_options.index(hf_storage if hf_storage else 'None'),
)
def _deploy_button():
enabled = hf_access_token and hf_space_name
return st.button('Deploy', disabled=not enabled, on_click=_deploy)
def _deploy():
hf_dataset_name = st.session_state['hf_dataset_name']
assert hf_space_name and hf_access_token and hf_dataset_name
hf_config_name = st.session_state.get('hf_config_name', None)
hf_split = st.session_state.get('hf_split', None)
sample_size = st.session_state.get('sample_size', None)
hf_space_storage: Optional[Union[Literal['small'], Literal['medium'], Literal['large']]]
if hf_storage == 'None':
hf_space_storage = None
else:
assert hf_storage == 'small' or hf_storage == 'medium' or hf_storage == 'large'
hf_space_storage = hf_storage
try:
space_link = ll.deploy_config(
hf_space=hf_space_name,
create_space=True,
hf_space_storage=hf_space_storage,
config=ll.Config(
datasets=[
ll.DatasetConfig(
namespace='local',
name=hf_dataset_name.replace('/', '_'),
source=ll.HuggingFaceSource(
dataset_name=hf_dataset_name,
config_name=hf_config_name,
split=hf_split,
sample_size=int(sample_size) if sample_size else None,
token=hf_access_token,
),
)
]
),
hf_token=hf_access_token,
)
st.session_state.space_link = space_link
st.session_state.current_page = 'success'
except Exception as e:
st.subheader('Deployment failed!', divider='red')
st.error(e)
_deploy_button()
def _success_page():
space_link = st.session_state.space_link
st.subheader('Success!', divider='green')
st.subheader(f'[Visit your HuggingFace space ↗]({space_link})')
st.write(
'Spaces are private by default. '
f'To make them public, visit the [Space settings]({space_link}/settings). '
)
if st.session_state.current_page == 'dataset':
_dataset_page()
elif st.session_state.current_page == 'space':
_space_page()
elif st.session_state.current_page == 'success':
_success_page()
# Sidebar content.
dataset_name = st.session_state.get('ds_dataset_name', None) or st.session_state.get(
'hf_dataset_name', None
)
if st.session_state.get('ds_loaded', False):
st.sidebar.header(
f'[{dataset_name}](https://huggingface.co/datasets/{dataset_name})',
divider='rainbow',
anchor=False,
help='Dataset information from HuggingFace datasets.',
)
st.sidebar.write(st.session_state.get('ds_description', None))
st.sidebar.write('##### Features')
st.sidebar.table(st.session_state.get('ds_features', {}))
st.sidebar.write('##### Splits')
st.sidebar.table(st.session_state.get('ds_splits', {}))
else:
if st.session_state.get('ds_error', None):
st.sidebar.subheader(f'Error loading `{dataset_name}`', divider='red', anchor=False)
st.sidebar.error(st.session_state.get('ds_error', None))
st.sidebar.write(
'If the dataset is private, make sure to enter a HuggingFace '
'token that has access to the dataset.'
)
else:
st.sidebar.write('Choose a dataset to see more info..')
|