Spaces:
Running
on
L4
Running
on
L4
File size: 7,814 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
#!/usr/bin/env python3
"""
Preprocess Script for UASOL Dataset
This script processes sequences in the UASOL dataset by:
- Parsing camera parameters from a 'log.txt' file.
- Reading a 'complete.json' manifest that describes frames (RGB + depth).
- Converting depth from millimeters to meters.
- Rescaling images and depth maps to a fixed resolution (default 640x480).
- Saving the camera intrinsics and pose in .npz files.
Usage:
python preprocess_uasol.py \
--input_dir /path/to/data_uasol \
--output_dir /path/to/processed_uasol
"""
import os
import json
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import argparse
import src.dust3r.datasets.utils.cropping as cropping
def parse_log_file(log_file):
"""
Parses the log.txt file and returns a dictionary of camera parameters.
Args:
log_file (str): Path to the log.txt file containing camera parameters.
Returns:
dict: A dictionary of camera parameters parsed from the file.
"""
camera_dict = {}
start_parse = False
with open(log_file, "r") as f:
for line in f:
line = line.strip()
if line.startswith("LEFT CAMERA PARAMETERS"):
start_parse = True
continue
if start_parse and ":" in line:
key, value = line.split(":", 1)
key = key.strip().replace(" ", "_").lower()
value = value.strip().strip(".")
# Handle numeric/list values
if "," in value or "[" in value:
# Convert to list of floats
value = [float(v.strip()) for v in value.strip("[]").split(",")]
else:
try:
value = float(value)
except ValueError:
pass
camera_dict[key] = value
return camera_dict
def process_data(task_args):
"""
Process a single frame of the dataset:
- Reads the RGB image and depth map.
- Converts depth from mm to meters.
- Rescales the image and depth to a fixed output resolution.
- Saves results (RGB, depth, camera intrinsics, and pose).
Args:
task_args (tuple): A tuple containing:
- data (dict): Frame info from 'complete.json'.
- seq_dir (str): Path to the sequence directory.
- out_rgb_dir (str): Output directory for RGB images.
- out_depth_dir (str): Output directory for depth maps.
- out_cam_dir (str): Output directory for camera intrinsics/pose.
- K (np.ndarray): 3x3 camera intrinsics matrix.
- H (int): Original image height.
- W (int): Original image width.
Returns:
str or None:
Returns an error message (str) if something goes wrong.
Otherwise, returns None on success.
"""
data, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, K, H, W = task_args
try:
img_p = data["color_frame_left"]
depth_p = data["depth_frame"]
matrix = data["m"]
# Input file paths
img_path = os.path.join(seq_dir, "Images", img_p + ".png")
depth_path = os.path.join(seq_dir, "Images", depth_p + ".png")
if not (os.path.isfile(img_path) and os.path.isfile(depth_path)):
return f"Missing files for {img_p}"
# Read RGB
img = Image.open(img_path).convert("RGB")
# Read depth (16-bit or 32-bit), then convert mm to meters
depth = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
if depth.shape[0] != H or depth.shape[1] != W:
return f"Depth shape mismatch for {img_p}"
depth = depth / 1000.0 # mm to meters
# Build the pose matrix
pose = np.array(matrix, dtype=np.float32)
# Convert translation (last column) from mm to meters
pose[:3, 3] /= 1000.0
# Rescale image and depth to desired output size (e.g., 640x480)
image, depthmap, camera_intrinsics = cropping.rescale_image_depthmap(
img, depth, K, output_resolution=(640, 480)
)
# Save outputs
out_img_path = os.path.join(out_rgb_dir, img_p + ".png")
out_depth_path = os.path.join(out_depth_dir, img_p + ".npy")
out_cam_path = os.path.join(out_cam_dir, img_p + ".npz")
image.save(out_img_path)
np.save(out_depth_path, depthmap)
np.savez(out_cam_path, intrinsics=camera_intrinsics, pose=pose)
except Exception as e:
return f"Error processing {img_p}: {e}"
return None
def main():
parser = argparse.ArgumentParser(description="Preprocess UASOL dataset.")
parser.add_argument(
"--input_dir", required=True, help="Path to the root UASOL directory."
)
parser.add_argument(
"--output_dir",
required=True,
help="Path to the directory where processed data will be stored.",
)
args = parser.parse_args()
root = os.path.abspath(args.input_dir)
out_dir = os.path.abspath(args.output_dir)
os.makedirs(out_dir, exist_ok=True)
# Find all sequences that have a 'Images' folder
seqs = []
for d in os.listdir(root):
images_path = os.path.join(root, d, "Images")
if os.path.isdir(images_path):
seqs.append(d)
for seq in seqs:
seq_dir = os.path.join(root, seq)
log_file = os.path.join(seq_dir, "log.txt")
manifest_file = os.path.join(seq_dir, "complete.json")
# Create output subdirectories
out_rgb_dir = os.path.join(out_dir, seq, "rgb")
out_depth_dir = os.path.join(out_dir, seq, "depth")
out_cam_dir = os.path.join(out_dir, seq, "cam")
os.makedirs(out_rgb_dir, exist_ok=True)
os.makedirs(out_depth_dir, exist_ok=True)
os.makedirs(out_cam_dir, exist_ok=True)
# Parse camera parameters from log.txt
camera_dict = parse_log_file(log_file)
# Extract relevant camera info
cx = camera_dict["optical_center_along_x_axis,_defined_in_pixels"]
cy = camera_dict["optical_center_along_y_axis,_defined_in_pixels"]
fx = camera_dict["focal_length_in_pixels_alog_x_axis"]
fy = camera_dict["focal_length_in_pixels_alog_y_axis"]
W, H = map(int, camera_dict["resolution"])
# Optionally read any 'depth_min_and_max_range_values' if needed
# depth_range = camera_dict['depth_min_and_max_range_values']
# Construct intrinsic matrix
K = np.eye(3, dtype=np.float32)
K[0, 0] = fx
K[1, 1] = fy
K[0, 2] = cx
K[1, 2] = cy
# Read the JSON manifest
if not os.path.isfile(manifest_file):
print(
f"Warning: No manifest file found at {manifest_file}. Skipping {seq}."
)
continue
with open(manifest_file, "r") as f:
metadata = json.load(f)["Data"]
# Build tasks for parallel processing
tasks = []
for data in metadata:
tasks.append(
(data, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, K, H, W)
)
# Process frames in parallel
with ProcessPoolExecutor(max_workers=os.cpu_count() or 4) as executor:
futures = {
executor.submit(process_data, t): t[0]["color_frame_left"]
for t in tasks
}
for future in tqdm(
as_completed(futures), total=len(futures), desc=f"Processing {seq}"
):
error = future.result()
if error:
print(error)
if __name__ == "__main__":
main()
|