Spaces:
Running
on
L4
Running
on
L4
File size: 10,282 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
#!/usr/bin/env python3
"""
Preprocess the Hypersim dataset.
This script reads camera parameters from a CSV file, converts an OpenGL-style
projection matrix into a camera intrinsic matrix, applies tone mapping, and
saves processed RGB images, depth maps, and camera metadata into an output
directory. Processing is done per scene and per camera view.
Usage:
python preprocess_hypersim.py --hypersim_dir /path/to/hypersim \
--output_dir /path/to/processed_hypersim
"""
import argparse
import os
import shutil
import time
import cv2
import h5py
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from PIL import Image
from tqdm import tqdm
# Ensure OpenEXR support for OpenCV.
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
def get_parser():
parser = argparse.ArgumentParser(
description="Preprocess the Hypersim dataset by converting projection "
"matrices, applying tone mapping, and saving processed outputs."
)
parser.add_argument(
"--hypersim_dir",
default="/path/to/hypersim",
help="Root directory of the Hypersim dataset.",
)
parser.add_argument(
"--output_dir",
default="/path/to/processed_hypersim",
help="Output directory for processed Hypersim data.",
)
return parser
def opengl_to_intrinsics(proj_matrix, width_pixels, height_pixels):
# Extract parameters from the projection matrix.
K00 = proj_matrix[0, 0] * width_pixels / 2.0
K01 = -proj_matrix[0, 1] * width_pixels / 2.0
K02 = (1.0 - proj_matrix[0, 2]) * width_pixels / 2.0
K11 = proj_matrix[1, 1] * height_pixels / 2.0
K12 = (1.0 + proj_matrix[1, 2]) * height_pixels / 2.0
return np.array([[K00, K01, K02], [0.0, K11, K12], [0.0, 0.0, 1.0]])
def process_scene(args):
rootdir, outdir, scene_name = args
scene_outdir = os.path.join(outdir, scene_name)
os.makedirs(scene_outdir, exist_ok=True)
seq_dir = os.path.join(rootdir, scene_name)
seq_detail_dir = os.path.join(seq_dir, "_detail")
seq_images_dir = os.path.join(seq_dir, "images")
# Read global camera parameters from the CSV file.
all_metafile = os.path.join(rootdir, "metadata_camera_parameters.csv")
df_camera_parameters = pd.read_csv(all_metafile, index_col="scene_name")
df_ = df_camera_parameters.loc[scene_name]
width_pixels = int(df_["settings_output_img_width"])
height_pixels = int(df_["settings_output_img_height"])
M_proj = np.array(
[
[df_["M_proj_00"], df_["M_proj_01"], df_["M_proj_02"], df_["M_proj_03"]],
[df_["M_proj_10"], df_["M_proj_11"], df_["M_proj_12"], df_["M_proj_13"]],
[df_["M_proj_20"], df_["M_proj_21"], df_["M_proj_22"], df_["M_proj_23"]],
[df_["M_proj_30"], df_["M_proj_31"], df_["M_proj_32"], df_["M_proj_33"]],
]
)
camera_intrinsics = opengl_to_intrinsics(
M_proj, width_pixels, height_pixels
).astype(np.float32)
if camera_intrinsics[0, 1] != 0:
print(f"camera_intrinsics[0, 1] != 0: {camera_intrinsics[0, 1]}")
return
# Read world scale and camera IDs.
worldscale = (
pd.read_csv(
os.path.join(seq_detail_dir, "metadata_scene.csv"),
index_col="parameter_name",
)
.to_numpy()
.flatten()[0]
.astype(np.float32)
)
camera_ids = (
pd.read_csv(
os.path.join(seq_detail_dir, "metadata_cameras.csv"),
header=None,
skiprows=1,
)
.to_numpy()
.flatten()
)
# Tone mapping parameters.
gamma = 1.0 / 2.2 # Standard gamma correction exponent.
inv_gamma = 1.0 / gamma
percentile = 90 # Desired percentile brightness in the unmodified image.
brightness_nth_percentile_desired = 0.8 # Desired brightness after scaling.
for camera_id in camera_ids:
subscene_dir = os.path.join(scene_outdir, f"{camera_id}")
os.makedirs(subscene_dir, exist_ok=True)
camera_dir = os.path.join(seq_detail_dir, camera_id)
if not os.path.exists(camera_dir):
print(f"{camera_dir} does not exist.")
continue
color_dir = os.path.join(seq_images_dir, f"scene_{camera_id}_final_hdf5")
geometry_dir = os.path.join(seq_images_dir, f"scene_{camera_id}_geometry_hdf5")
if not (os.path.exists(color_dir) and os.path.exists(geometry_dir)):
print(f"{color_dir} or {geometry_dir} does not exist.")
continue
camera_positions_hdf5_file = os.path.join(
camera_dir, "camera_keyframe_positions.hdf5"
)
camera_orientations_hdf5_file = os.path.join(
camera_dir, "camera_keyframe_orientations.hdf5"
)
with h5py.File(camera_positions_hdf5_file, "r") as f:
camera_positions = f["dataset"][:]
with h5py.File(camera_orientations_hdf5_file, "r") as f:
camera_orientations = f["dataset"][:]
assert len(camera_positions) == len(
camera_orientations
), f"len(camera_positions)={len(camera_positions)} != len(camera_orientations)={len(camera_orientations)}"
rgbs = sorted([f for f in os.listdir(color_dir) if f.endswith(".color.hdf5")])
depths = sorted(
[f for f in os.listdir(geometry_dir) if f.endswith(".depth_meters.hdf5")]
)
assert len(rgbs) == len(
depths
), f"len(rgbs)={len(rgbs)} != len(depths)={len(depths)}"
exist_frame_ids = [int(f.split(".")[1]) for f in rgbs]
valid_camera_positions = camera_positions[exist_frame_ids]
valid_camera_orientations = camera_orientations[exist_frame_ids]
for i, (rgb, depth) in enumerate(tqdm(zip(rgbs, depths), total=len(rgbs))):
frame_id = int(rgb.split(".")[1])
assert frame_id == int(
depth.split(".")[1]
), f"frame_id={frame_id} != {int(depth.split('.')[1])}"
# Tone mapping.
render_entity = os.path.join(
geometry_dir,
depth.replace("depth_meters.hdf5", "render_entity_id.hdf5"),
)
with h5py.File(os.path.join(color_dir, rgb), "r") as f:
color = f["dataset"][:]
with h5py.File(os.path.join(geometry_dir, depth), "r") as f:
distance = f["dataset"][:]
R_cam2world = valid_camera_orientations[i]
R_cam2world = R_cam2world @ np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])
t_cam2world = valid_camera_positions[i] * worldscale
T_cam2world = np.eye(4)
T_cam2world[:3, :3] = R_cam2world
T_cam2world[:3, 3] = t_cam2world
if not np.isfinite(T_cam2world).all():
print(f"frame_id={frame_id} T_cam2world is not finite.")
continue
focal = (camera_intrinsics[0, 0] + camera_intrinsics[1, 1]) / 2.0
ImageplaneX = (
np.linspace(
(-0.5 * width_pixels) + 0.5,
(0.5 * width_pixels) - 0.5,
width_pixels,
)
.reshape(1, width_pixels)
.repeat(height_pixels, 0)
.astype(np.float32)[:, :, None]
)
ImageplaneY = (
np.linspace(
(-0.5 * height_pixels) + 0.5,
(0.5 * height_pixels) - 0.5,
height_pixels,
)
.reshape(height_pixels, 1)
.repeat(width_pixels, 1)
.astype(np.float32)[:, :, None]
)
ImageplaneZ = np.full([height_pixels, width_pixels, 1], focal, np.float32)
Imageplane = np.concatenate([ImageplaneX, ImageplaneY, ImageplaneZ], axis=2)
depth = distance / np.linalg.norm(Imageplane, axis=2) * focal
with h5py.File(render_entity, "r") as f:
render_entity_id = f["dataset"][:].astype(np.int32)
assert (render_entity_id != 0).all()
valid_mask = render_entity_id != -1
if np.sum(valid_mask) == 0:
scale = 1.0 # If there are no valid pixels, set scale to 1.0.
else:
brightness = (
0.3 * color[:, :, 0] + 0.59 * color[:, :, 1] + 0.11 * color[:, :, 2]
)
brightness_valid = brightness[valid_mask]
eps = 0.0001 # Avoid division by zero.
brightness_nth_percentile_current = np.percentile(
brightness_valid, percentile
)
if brightness_nth_percentile_current < eps:
scale = 0.0
else:
scale = (
np.power(brightness_nth_percentile_desired, inv_gamma)
/ brightness_nth_percentile_current
)
color = np.power(np.maximum(scale * color, 0), gamma)
color = np.clip(color, 0.0, 1.0)
out_rgb_path = os.path.join(subscene_dir, f"{frame_id:06d}_rgb.png")
Image.fromarray((color * 255).astype(np.uint8)).save(out_rgb_path)
out_depth_path = os.path.join(subscene_dir, f"{frame_id:06d}_depth.npy")
np.save(out_depth_path, depth.astype(np.float32))
out_cam_path = os.path.join(subscene_dir, f"{frame_id:06d}_cam.npz")
np.savez(
out_cam_path,
intrinsics=camera_intrinsics,
pose=T_cam2world.astype(np.float32),
)
def main():
parser = get_parser()
args = parser.parse_args()
# Use placeholder paths to avoid personal/private information.
rootdir = args.hypersim_dir # e.g., '/path/to/hypersim'
outdir = args.output_dir # e.g., '/path/to/processed_hypersim'
os.makedirs(outdir, exist_ok=True)
import multiprocessing
scenes = sorted(
[f for f in os.listdir(rootdir) if os.path.isdir(os.path.join(rootdir, f))]
)
# Process each scene sequentially (or use multiprocessing if desired)
for scene in scenes:
process_scene((rootdir, outdir, scene))
if __name__ == "__main__":
main()
|