File size: 7,711 Bytes
1d2dbc8
e6d4283
 
 
 
0e41a86
 
e6d4283
 
 
0e41a86
 
 
 
 
e6d4283
c325cfb
 
 
 
0e41a86
 
 
 
 
 
 
 
 
 
e6d4283
0e41a86
 
 
 
 
 
 
 
 
 
 
 
e6d4283
0e41a86
 
 
 
 
 
 
 
c325cfb
7422403
0e41a86
7422403
c325cfb
0e41a86
c325cfb
0e41a86
 
 
 
c325cfb
 
 
0e41a86
c325cfb
 
 
 
 
 
 
 
 
 
0e41a86
c325cfb
6179bed
0e41a86
e6d4283
0e41a86
 
 
 
 
e6d4283
0e41a86
 
 
 
4c41b67
0e41a86
e6d4283
0e41a86
 
 
 
e6d4283
0e41a86
 
 
e6d4283
0e41a86
 
 
e6d4283
 
 
 
 
 
 
 
c325cfb
0e41a86
 
c325cfb
 
 
 
 
 
 
 
 
e6d4283
c325cfb
e6d4283
 
 
 
 
0e41a86
 
 
 
e6d4283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e41a86
 
 
e6d4283
 
0e41a86
e6d4283
 
 
0e41a86
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import csv
import numpy as np
import gradio as gr
import plotly.graph_objs as go
import datetime
from plotly.subplots import make_subplots
from testing_interface import model_defining

# Function to load data from a text file into a numpy array of the right format
def load_data(filename):
    with open(filename, 'r') as file:
        data = [int(line.strip()) for line in file]
    data = np.array(data, dtype=int)
    data[data == -100] = -1
    return data.reshape((-1, 1))

# Convert a string with comma decimal separator to a float
def convert_float(value_str):
    return float(value_str.replace(',', '.'))

# Find indicated time in the acc_data
def find_index(timestamps, date, begin_time, end_time):
    if date.startswith('0'):
        date = date[1:]
        
    begin_string = date + " " + begin_time + ":00.000"
    end_string = date + " " + end_time + ":00.000"
    
    begin_index = None
    end_index = None
    
    # Iterate over timestamps to find the indices
    for index, timestamp in enumerate(timestamps):
        if begin_index is None and timestamp == begin_string:
            begin_index = index
        if end_index is None and timestamp == end_string:
            end_index = index
        if begin_index is not None and end_index is not None:
            break
    
    return begin_index, end_index

def process_csv(file, date, begin_time, end_time):
    if file is None:
        return "No file uploaded", None
    
    try:
        date_t = datetime.datetime.strptime(date, '%d/%m/%Y')
        begin_time_t = datetime.datetime.strptime(begin_time, '%H:%M').time()
        end_time_t = datetime.datetime.strptime(end_time, '%H:%M').time()
    except ValueError:
        return "Invalid date or time format. Please use DD/MM/YYYY for date and HH:MM for time.", None

    acc_data = []
    time_parts = []

    # Read and prep accelerometer data    
    with open(file.name, 'r', newline='') as csvfile:
        csv_reader = csv.reader(csvfile)
        
        for _ in range(11):
            next(csv_reader)
        
        count = 0
        for row in csv_reader:
            timestamp_parts = row[0].split()
            time_parts.append(row[0])
            
            if len(timestamp_parts) >= 2:
                time_part = timestamp_parts[1]
                converted_values = [convert_float(val_str) for val_str in row[1:]]
                
                if len(converted_values) >= 3:
                    row_data = [count, time_part] + converted_values
                    acc_data.append(row_data)
                    count += 1

    # Write acc_data to a numpy array
    acc_data = np.array(acc_data)[:, 2:].astype(float)  # Convert strings to floats

    begin_index, end_index = find_index(time_parts, date, begin_time, end_time)
    
    # Check if indexes are in acc_data
    if end_index is None:
        return "End time not found in data. Please check the specified end time.", None
    if begin_index is None:
        return "Begin time not found in data. Please check the specified begin time.", None
    
    acc_data = acc_data[begin_index-121:end_index+122, :]
    time_parts = time_parts[begin_index-121:end_index+122]
    
    # Call the model_defining function from testing.py
    name_model = "S3_101_102_103_validation_epoch_10.pth"
    output_file = "predicted_labels.txt"

    model_defining(acc_data, name_model, output_file)
    
    # Load the data
    predicted_labels = load_data("predicted_labels.txt")

    # Remove first and last 121 samples from acc_data
    acc_data = acc_data[121:-121, :]
    time_parts = time_parts[121:-121]
    
    # Append the new columns
    complete_array = np.hstack((acc_data, predicted_labels))

    # Calculate the total number of predicted functional and non-functional activity
    total_predicted_functional = np.sum(complete_array[:, 3] != 0)
    total_predicted_non_functional = np.sum(complete_array[:, 3] == 0)

    # Calculate percentages
    predicted_functional_percentage = (total_predicted_functional / len(complete_array)) * 100
    predicted_non_functional_percentage = (total_predicted_non_functional / len(complete_array)) * 100

    # Calculate the total number of milliseconds for functional and non-functional activity
    total_predicted_functional_ms = np.sum(complete_array[:, 3] != 0) * 33.333333
    total_predicted_non_functional_ms = np.sum(complete_array[:, 3] == 0) * 33.333333

    # Convert milliseconds to minutes
    predicted_functional_minutes = total_predicted_functional_ms / (1000 * 60)
    predicted_non_functional_minutes = total_predicted_non_functional_ms / (1000 * 60)

    # Format the minutes into hours, minutes, and seconds
    predicted_functional_time = "{:02}:{:02}:{:02}".format(int(predicted_functional_minutes // 60), int(predicted_functional_minutes % 60), int(predicted_functional_minutes % 1 * 60))
    predicted_non_functional_time = "{:02}:{:02}:{:02}".format(int(predicted_non_functional_minutes // 60), int(predicted_non_functional_minutes % 60), int(predicted_non_functional_minutes % 1 * 60))

    # Formulate return string
    return_string = f"Percentage of predicted functional activity: {predicted_functional_percentage:.2f}%\nPercentage of predicted non-functional activity: {predicted_non_functional_percentage:.2f}%\n\nNumber of minutes of functional activity in predicted labels: {predicted_functional_time}\nNumber of minutes of non-functional activity in predicted labels: {predicted_non_functional_time}\n"
    
    # Create subplots
    fig = make_subplots(rows=2, cols=1, shared_xaxes=True, row_heights=[0.6, 0.4], specs=[[{"type": "scatter"}], [{"type": "scatter"}]])

    # Add traces to the subplots
    fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 0], mode='lines', name='Acc X', line=dict(width=0.75)), row=1, col=1)
    fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 1], mode='lines', name='Acc Y', line=dict(width=0.75)), row=1, col=1)
    fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 2], mode='lines', name='Acc Z', line=dict(width=0.75)), row=1, col=1)
    fig.add_trace(go.Scatter(x=time_parts, y=complete_array[:, 3], mode='lines', name='Predicted labels', line=dict(width=1)), row=2, col=1)

    # Update layout
    fig.update_layout(
        title='Accelerometer Data with Annotated Labels',
        xaxis=dict(title='Time (milliseconds)'),
        yaxis=dict(title='Accelerometer Data'),
        yaxis2=dict(title='Predicted'),
        showlegend=True,
        height=600
    )

    return return_string, fig

with gr.Blocks(theme=gr.themes.Base()) as demo:
    gr.Markdown(
    """
    # Functional Upper Limb Activity Recognition Model
    Upload your csv file containing accelerometer data to obtain a prediction on the amount of functional activity of the upper limbs.
    """)
    with gr.Row(equal_height=True):
        with gr.Column():
            input_file = gr.File(label="Upload CSV file")
            input_date = gr.Textbox(label="Date (DD/MM/YYYY)")
            input_begin_time = gr.Textbox(label="Begin Time (HH:MM)")
            input_end_time = gr.Textbox(label="End Time (HH:MM)")
            with gr.Row():
                submit_btn = gr.Button("Submit", variant='primary')
                clear_btn = gr.Button("Clear", variant='secondary')
        output_text = gr.Textbox(label="Prediction statistics")
    output_plot = gr.Plot(label="CSV Plot")

    submit_btn.click(fn=process_csv, inputs=[input_file, input_date, input_begin_time, input_end_time], outputs=[output_text, output_plot])
    clear_btn.click(fn=lambda: (None, "", "", ""), outputs=[input_file, input_date, input_begin_time, input_end_time, output_text, output_plot])

demo.launch()