File size: 78,094 Bytes
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
 
e1b71d5
 
 
 
f1f701a
 
 
 
 
 
e1b71d5
f1f701a
 
 
 
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
f1f701a
e1b71d5
 
 
 
 
f1f701a
e1b71d5
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
f1f701a
e1b71d5
 
f1f701a
e1b71d5
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
f1f701a
 
 
 
e1b71d5
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
f1f701a
 
 
e1b71d5
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1f701a
e1b71d5
 
 
 
 
f1f701a
e1b71d5
 
f1f701a
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a255f8
e1b71d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Automatic curation of the Hugging Face Hub using Collections and the `huggingface_hub` library\n",
    "\n",
    "In this short tutorial, we will see how to create a Hugging Face Collection automatically using the `huggingface_hub` library. We'll focus on creating a collection that will curate the top 10% most used instruction tuning datasets on the Hub. \n",
    "\n",
    "If you are already familiar with Collections and the `huggingface_hub` library, you can skip to the next section.\n",
    "\n",
    "## What is a Hugging Face Collection?\n",
    "\n",
    "Collections are a recently added feature on the Hugging Face Hub which unlock some really powerful new ways of curating what is on the Hub. With the Hub becoming the defacto platform for open-source machine learning models, it is important to be able to curate the content on the Hub. Collections allow you to do just that.\n",
    "\n",
    "Collections can be used to organize models, datasets, Spaces, and papers on the Hub in various different ways. You could for example create collections around a particular use case, or a particular topic, or a particular model architecture. You could also create collections that are a combination of these things. In this tutorial, we will create a collection that curates the top 10% most used instruction tuning datasets on the Hub. We will do this using the `huggingface_hub` library.\n",
    "\n",
    "## So what is the `huggingface_hub` library?\n",
    "\n",
    "The `hub` library is a Python library that allows you to interact with the Hugging Face Hub. It allows you to do things like upload and download models, datasets, and Spaces. Recently the library added support for creating and managing collection. This ability to programmatically create and manage collections unlocks a bunch of exciting new use cases. In this tutorial we'll show a few possibilities of what you can do with the `huggingface_hub` library and Collections but we're excited to see what you will do with it! "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Install packages\n",
    "\n",
    "For this tutorial, the only package we'll need outside of the Python standard library is the `huggingface_hub` library."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "HKyybBVZ1hBh",
    "outputId": "ceaa1d1a-85e6-4015-e4e1-04bbe88d05cf"
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Collecting git+https://github.com/huggingface/huggingface_hub\n",
      "  Cloning https://github.com/huggingface/huggingface_hub to /private/var/folders/gf/nk18mwt53sb4d0zpvjzs40bw0000gn/T/pip-req-build-hs4ssvjo\n",
      "  Running command git clone --filter=blob:none --quiet https://github.com/huggingface/huggingface_hub /private/var/folders/gf/nk18mwt53sb4d0zpvjzs40bw0000gn/T/pip-req-build-hs4ssvjo\n",
      "  Resolved https://github.com/huggingface/huggingface_hub to commit c32d4b31b679c9e91b906709631901f6aa85324d\n",
      "  Installing build dependencies ... \u001b[?25ldone\n",
      "\u001b[?25h  Getting requirements to build wheel ... \u001b[?25ldone\n",
      "\u001b[?25h  Preparing metadata (pyproject.toml) ... \u001b[?25ldone\n",
      "\u001b[?25hRequirement already satisfied: filelock in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (3.12.4)\n",
      "Requirement already satisfied: fsspec>=2023.5.0 in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (2023.9.2)\n",
      "Requirement already satisfied: requests in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (2.31.0)\n",
      "Requirement already satisfied: tqdm>=4.42.1 in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (4.66.1)\n",
      "Requirement already satisfied: pyyaml>=5.1 in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (6.0.1)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (4.8.0)\n",
      "Requirement already satisfied: packaging>=20.9 in ./.venv/lib/python3.11/site-packages (from huggingface-hub==0.18.0.dev0) (23.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in ./.venv/lib/python3.11/site-packages (from requests->huggingface-hub==0.18.0.dev0) (3.2.0)\n",
      "Requirement already satisfied: idna<4,>=2.5 in ./.venv/lib/python3.11/site-packages (from requests->huggingface-hub==0.18.0.dev0) (3.4)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in ./.venv/lib/python3.11/site-packages (from requests->huggingface-hub==0.18.0.dev0) (2.0.5)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in ./.venv/lib/python3.11/site-packages (from requests->huggingface-hub==0.18.0.dev0) (2023.7.22)\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "%pip install git+https://github.com/huggingface/huggingface_hub --upgrade"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Authenticate\n",
    "\n",
    "In order to create and manage collections, you need to be authenticated. You can do this via the `huggingface_hub` library using the `login` function. This function will detect where you are running your code and suggest the best way to authenticate."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "id": "Qn9p5Bsz2NN5"
   },
   "outputs": [],
   "source": [
    "from huggingface_hub import login"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 145,
     "referenced_widgets": [
      "428d3687eb4342e59d23318099afe34f",
      "18f533e671114b6385428a534364f10a",
      "e4c0e23001254742a94898203a222c6c",
      "9d970a88c8c04bc586473251393aaec7",
      "9f8288bb8cae4796a067580ff7afce69",
      "077012b6f63e4148848c9b9e8726fb18",
      "14f46443f97c4b4fb46c5967aec1178f",
      "5aaff54fecb84936a8dc9fee4393494d",
      "aee4b5a2e361451dae879f37222245f3",
      "9dfa5a7ee7794a5d8396674db2c0b683",
      "3634abd523b7477082a0a8135f1fa770",
      "023691d310634e6e83da20b9575759a2",
      "dded08e463404a53abb86ac605968626",
      "9d99d6e39a424145b017abff9021d9a0",
      "38e81f2aed79485498035e9c418165b4",
      "37807c4db5834365b86bc92c36835220",
      "847b9e4085814f958a147286be4f56eb",
      "6efac326ad7946e3a9ecc22b50568633",
      "9d043d68e16440899a6fc9b740f5970d",
      "88242ee08b884098ad743c1738b7dc97",
      "862cc50e401845fa98054e6bd015a074",
      "4fe39f9b54474fb4966f71c7df0cf93e",
      "d97e9b98cade45eaa2b9b526b1a4bb98",
      "b7f608ef35d84fd7a736260236025429",
      "09ca4ed6420340e0b76d64949301bed4",
      "b2261f5044db4af0bed02f76115d08f9",
      "055c0da20e264ec896963f9edf372a7d",
      "d0f55244ec614704a571f920ffa27bfd",
      "3b77fe48c5e44c879998de497be7a381",
      "15032b9578124624bcc42771cb5d5ad8",
      "eca43f65d6c1407bbb16cd26f60d5b7f",
      "934d899f6c604fa1bf4a8108aa09b190"
     ]
    },
    "id": "Sv15J3mW2Ous",
    "outputId": "e537a566-8cdd-4316-bb69-72f5353345da"
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b3c0b966dfeb400c953e3e13689d5a0d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "login()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Finding the right datasets using the `huggingface_hub` library\n",
    "\n",
    "We can use the `huggingface_hub` library to list datasets on the Hub using the `list_datasets` function. We can optionally pass in a query to search for datasets that match a particular query. We can also optionally pass in other filters that allow us to further refine the datasets returned by the library. For example, we could filter to only include datasets for a particular task, or datasets that have a particular type of license."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "id": "SfV6YRentLI8"
   },
   "outputs": [],
   "source": [
    "from huggingface_hub import list_datasets"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For this tutorial we'll keep our approach fairly simple and just look for datasets that have the word `instruction` in the name."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "datasets = list_datasets(search=\"instruction\", full=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "List datasets returns a generator. This means that we can process a large number of datasets, models or Spaces without running out of memory. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "generator"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "type(datasets)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can start filtering our results by removing any datasets that don't have at least a single download. Since we're doing this in a [list comprehension](https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions), this will 'consume' the generator. This means that this step will take a little bit of time since it's actually starting to call the Hugging Face Hub API to get the datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "datasets = [dataset for dataset in datasets if dataset.downloads > 1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Getting the top 10% instruction tuned datasets\n",
    "\n",
    "What do we mean by the top 10% instruction tuned datasets? There are various different metrics we could use to define what we mean by top 10%. For this tutorial we'll focus on the number of likes for a dataset. We could also look at other metrics, like the number of downloads, the level of user discussion on the dataset, the quality of documentation, the number of examples...Whilst likes isn't a perfect metric it does give us a good starting point."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Getting the number of likes for all of our datasets\n",
    "\n",
    "To know what our cuttoff point is for the top 10% of datasets, we need to know how many likes the most liked dataset has. We can do this by going through all of our datasets and getting the number of likes for each one. Let's take a peek at a single dataset from our list of datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetInfo: { \n",
       "  {'_id': '621ffdd236468d709f183185',\n",
       "   'author': 'darkraipro',\n",
       "   'cardData': None,\n",
       "   'citation': None,\n",
       "   'description': None,\n",
       "   'disabled': False,\n",
       "   'downloads': 340,\n",
       "   'gated': False,\n",
       "   'gitalyUid': 'f21ae5b0c1d4859c8ba1412e2aa6682e34e9596cd4cc027758b8557475f0ae11',\n",
       "   'id': 'darkraipro/recipe-instructions',\n",
       "   'lastModified': '2022-01-18T16:22:01.000Z',\n",
       "   'likes': 0,\n",
       "   'private': False,\n",
       "   'sha': 'e7feba49dd438849ec3d309ec4ab52a0fd39fc39',\n",
       "   'siblings': [],\n",
       "   'tags': ['region:us']}\n",
       "}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "datasets[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that each dataset is a `DatasetInfo` object. This object contains a bunch of information about the dataset. We can see that the number of likes is stored in the `likes` attribute. We can use this to get the number of likes for each dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "likes = [dataset.likes for dataset in datasets]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Calculate the threshold for the top 10% of datasets\n",
    "\n",
    "To calculate the threshold for the top 10% of datasets, we'll create a function that takes our list of like numbers and return the threshold that separates the top 10% of likes from the rest. We can then use this function to get the threshold for our list of datasets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "id": "Q3JCU5lj9dU3"
   },
   "outputs": [],
   "source": [
    "import math\n",
    "from typing import List"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "id": "wKuyNPK09YJ5"
   },
   "outputs": [],
   "source": [
    "def get_threshold(numbers: List[int], threshold: float = 0.90) -> int:\n",
    "    sorted_numbers = sorted(numbers)\n",
    "    index = math.ceil(len(sorted_numbers) * threshold) - 1\n",
    "    return sorted_numbers[index]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "id": "9mrqhvLq_0Yk"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "10"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "threshold = get_threshold(likes)\n",
    "threshold"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Filter our datasets to only include those with a number of likes above the threshold"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "id": "YguMpWpt7rlD"
   },
   "outputs": [],
   "source": [
    "datasets = [dataset for dataset in datasets if dataset.likes > threshold]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "13"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(datasets)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Creating our collection \n",
    "\n",
    "Now that we've got a subset of datasets which match our curation criteria we can move to the next step of creating a Collection to which we can add these datasets.\n",
    "\n",
    "We can to this using the `create_collection` function. This function allows us to create a Collection programmatically. We must pass in a `title` and we can also specify a `description` and a `namespace`. If you don't specify a namespace, the collection will be created in your personal namespace but since I want to add this collection to the `librarian-bots` organization I'll specify it explicitly here. \n",
    "\n",
    "The `exists_ok` parameter allows us to specify what to do if a collection with the same title already exists. If we set this to `True` then the function will return the existing collection. If we set this to `False` then the function will raise an error if a collection with the same title already exists."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import create_collection\n",
    "\n",
    "collection = create_collection(\n",
    "    title=\"Top 10% instruction tuning datasets\",\n",
    "    description=\"Collects datasets with 'instruction' in the name and more than 1 download and in the top 10% for the number of likes\",\n",
    "    namespace=\"librarian-bots\",\n",
    "    exists_ok=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Lets take a quick look at the collection we've created."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Collection: { \n",
       "  {'description': \"Collects datasets with 'instruction' in the name and more than 1 download and in the top 10% for the \"\n",
       "                  'number of likes',\n",
       "   'items': [],\n",
       "   'last_updated': datetime.datetime(2023, 9, 25, 12, 36, 58, 301000, tzinfo=datetime.timezone.utc),\n",
       "   'owner': 'librarian-bots',\n",
       "   'position': 0,\n",
       "   'private': False,\n",
       "   'slug': 'librarian-bots/top-10-instruction-tuning-datasets-65117eeaca29f41ae7ae39fe',\n",
       "   'theme': 'indigo',\n",
       "   'title': 'Top 10% instruction tuning datasets',\n",
       "   'url': 'https://huggingface.co/collections/librarian-bots/top-10-instruction-tuning-datasets-65117eeaca29f41ae7ae39fe'}\n",
       "}"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "collection"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "When we call the `create_collection` function we get back a `Collection` object. This object contains a bunch of information about the collection. We can see for example the title, description, and namespace of the collection.\n",
    "\n",
    "We can also see that at the moment the attribute `items` is an empty list. The `items` attribute stores the datasets, models, Spaces, and papers that are in the collection. We can add items to the collection using the `add_collection_item` function."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before we add our items to the collection we can do one more bit of additional curation: sorting by downloads. For this collection we don't have a huge number of items so sorting isn't as important but the order of a collection can be used to express so additional information about the collection. For example, you could sort a collection by the date a item as last updated, or by the number of downloads, or by the number of likes. For our example we'll sort by the number of downloads."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "id": "8a9U5Bc376qD"
   },
   "outputs": [],
   "source": [
    "sorted_datasets = sorted(datasets, key=lambda dataset: dataset.downloads, reverse=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's take a quick peek at the first two examples to see if this looks okay!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/"
    },
    "id": "eQQHSZ-IABLb",
    "outputId": "aec16d23-acd8-46be-f476-fa39d5b656eb"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[DatasetInfo: { \n",
       "   {'_id': '64773a98906bb0203e52faad',\n",
       "    'author': 'LinkSoul',\n",
       "    'cardData': {'dataset_info': {'dataset_size': 13444870155,\n",
       "                                  'download_size': 3542585235,\n",
       "                                  'features': [{'dtype': 'string', 'name': 'id'},\n",
       "                                               {'list': [{'dtype': 'string', 'name': 'from'},\n",
       "                                                         {'dtype': 'string', 'name': 'value'}],\n",
       "                                                'name': 'conversations'},\n",
       "                                               {'dtype': 'string', 'name': 'instruction'}],\n",
       "                                  'splits': [{'name': 'train', 'num_bytes': 13444870155, 'num_examples': 10077297}]}},\n",
       "    'citation': None,\n",
       "    'description': None,\n",
       "    'disabled': False,\n",
       "    'downloads': 2968,\n",
       "    'gated': False,\n",
       "    'gitalyUid': '27a10b39e75118535e9d37a774ac8e8f0af89e44385f38bb930c6d5474270e1d',\n",
       "    'id': 'LinkSoul/instruction_merge_set',\n",
       "    'lastModified': '2023-06-01T03:19:51.000Z',\n",
       "    'likes': 104,\n",
       "    'private': False,\n",
       "    'sha': 'f26cd861df9df27973f0a07682462860ccdf14ae',\n",
       "    'siblings': [],\n",
       "    'tags': ['region:us']}\n",
       " },\n",
       " DatasetInfo: { \n",
       "   {'_id': '642ef3fe28a26b5c89afb5a8',\n",
       "    'author': 'ArmelR',\n",
       "    'cardData': {'pretty_name': 'stack exchange instruction'},\n",
       "    'citation': None,\n",
       "    'description': None,\n",
       "    'disabled': False,\n",
       "    'downloads': 879,\n",
       "    'gated': False,\n",
       "    'gitalyUid': 'db81393f8a3b85f258162beca50f86f7f54449e9ffe1a84b304b28cedbb76a51',\n",
       "    'id': 'ArmelR/stack-exchange-instruction',\n",
       "    'lastModified': '2023-05-26T08:37:42.000Z',\n",
       "    'likes': 46,\n",
       "    'private': False,\n",
       "    'sha': '3e463817c02767cd64d9ad0276c6d291c7f120aa',\n",
       "    'siblings': [],\n",
       "    'tags': ['region:us']}\n",
       " }]"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sorted_datasets[:2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Adding items to our collection \n",
    "\n",
    "Now we're ready to populate our collection. We'll use the `add_collection_item` function to add each dataset to our collection. We can use the `?` operator to get more information about this function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import add_collection_item"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[0;31mSignature:\u001b[0m\n",
      "\u001b[0madd_collection_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mcollection_slug\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'str'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mitem_id\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'str'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mitem_type\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'CollectionItemType_T'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0;34m*\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mnote\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'Optional[str]'\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mexists_ok\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'bool'\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m    \u001b[0mtoken\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;34m'Optional[str]'\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n",
      "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;34m'Collection'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mDocstring:\u001b[0m\n",
      "Add an item to a collection on the Hub.\n",
      "\n",
      "Args:\n",
      "    collection_slug (`str`):\n",
      "        Slug of the collection to update. Example: `\"TheBloke/recent-models-64f9a55bb3115b4f513ec026\"`.\n",
      "    item_id (`str`):\n",
      "        ID of the item to add to the collection. It can be the ID of a repo on the Hub (e.g. `\"facebook/bart-large-mnli\"`)\n",
      "        or a paper id (e.g. `\"2307.09288\"`).\n",
      "    item_type (`str`):\n",
      "        Type of the item to add. Can be one of `\"model\"`, `\"dataset\"`, `\"space\"` or `\"paper\"`.\n",
      "    note (`str`, *optional*):\n",
      "        A note to attach to the item in the collection. The maximum size for a note is 500 characters.\n",
      "    exists_ok (`bool`, *optional*):\n",
      "        If `True`, do not raise an error if item already exists.\n",
      "    token (`str`, *optional*):\n",
      "        Hugging Face token. Will default to the locally saved token if not provided.\n",
      "\n",
      "Returns: [`Collection`]\n",
      "\n",
      "Example:\n",
      "\n",
      "```py\n",
      ">>> from huggingface_hub import add_collection_item\n",
      ">>> collection = add_collection_item(\n",
      "...     collection_slug=\"davanstrien/climate-64f99dc2a5067f6b65531bab\",\n",
      "...     item_id=\"pierre-loic/climate-news-articles\",\n",
      "...     item_type=\"dataset\"\n",
      "... )\n",
      ">>> collection.items[-1].item_id\n",
      "\"pierre-loic/climate-news-articles\"\n",
      "# ^item got added to the collection on last position\n",
      "\n",
      "# Add collection with a note\n",
      ">>> add_collection_item(\n",
      "...     collection_slug=\"davanstrien/climate-64f99dc2a5067f6b65531bab\",\n",
      "...     item_id=\"datasets/climate_fever\",\n",
      "...     item_type=\"dataset\"\n",
      "...     note=\"This dataset adopts the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet.\"\n",
      "... )\n",
      "(...)\n",
      "```\n",
      "\u001b[0;31mFile:\u001b[0m      ~/Documents/code/librarian-bot-work/tutorials/.venv/lib/python3.11/site-packages/huggingface_hub/hf_api.py\n",
      "\u001b[0;31mType:\u001b[0m      method"
     ]
    }
   ],
   "source": [
    "?add_collection_item"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you can see the `add_collection_item` function requires a `collection_slug` argument. This is to let `add_collection_item` know which collection to add the item to. We can get the `collection_slug` from the `Collection` object we created earlier. \n",
    "\n",
    "We also need to specify the `item_id` of the item we want to add. For datasets we can access the `id` from the `DatasetInfo` object to get this value. Additionally we need to specify the type of the item we want to add. This should be one of `dataset`, `model`, `space`, or `paper`. \n",
    "\n",
    "We can optionally add a note which we could use to store some additional information about the item. For example, we could use this to store the reason why we added this item to the collection. In this case we'll store any tags that the dataset has."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "id": "mp2GYws46kBD"
   },
   "outputs": [],
   "source": [
    "for dataset in datasets:\n",
    "    if dataset.tags is not None:\n",
    "        note = f\"Dataset has the following tags: {dataset.tags}\"\n",
    "    else:\n",
    "        note = \"Dataset does not have any tags\"\n",
    "    add_collection_item(\n",
    "        collection.slug,\n",
    "        item_id=dataset.id,\n",
    "        item_type=\"dataset\",\n",
    "        note=note,\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Taking a look at our collection\n",
    "\n",
    "The `huggingface_hub` library has a `get_collection` function which allows us to get a `Collection` object from the Hub. We can use this to take a look at our collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import get_collection"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll pass in the `collection_slug` to the `get_collection` function to get our collection. We can then take a look at the `items` attribute to see the items in our collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[CollectionItem: { \n",
       "   {'author': 'Muennighoff',\n",
       "    'downloads': 313,\n",
       "    'gated': False,\n",
       "    'isLikedByUser': False,\n",
       "    'item_id': 'Muennighoff/natural-instructions',\n",
       "    'item_object_id': '65117eeaec7fac9ec2fcaec1',\n",
       "    'item_type': 'dataset',\n",
       "    'lastModified': '2022-12-23T20:08:44.000Z',\n",
       "    'likes': 18,\n",
       "    'note': \"Dataset has the following tags: ['task_categories:other', 'annotations_creators:crowdsourced', \"\n",
       "            \"'annotations_creators:expert-generated', 'multilinguality:monolingual', 'size_categories:100M<n<1B', \"\n",
       "            \"'language:en', 'region:us']\",\n",
       "    'position': 0,\n",
       "    'private': False,\n",
       "    'repoType': 'dataset',\n",
       "    'viewer': 'viewer'}\n",
       " },\n",
       " CollectionItem: { \n",
       "   {'author': 'qwedsacf',\n",
       "    'downloads': 225,\n",
       "    'gated': False,\n",
       "    'isLikedByUser': False,\n",
       "    'item_id': 'qwedsacf/grade-school-math-instructions',\n",
       "    'item_object_id': '65117eeb3368c9f41c835e6a',\n",
       "    'item_type': 'dataset',\n",
       "    'lastModified': '2023-02-11T01:59:26.000Z',\n",
       "    'likes': 21,\n",
       "    'note': \"Dataset has the following tags: ['region:us']\",\n",
       "    'position': 1,\n",
       "    'private': False,\n",
       "    'repoType': 'dataset',\n",
       "    'viewer': 'viewer'}\n",
       " }]"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "updated_collection = get_collection(collection.slug)\n",
    "updated_collection.items[:2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that our collection now contains the datasets we added to it. We can now also begin to think of some possible ways we could programmatically explore our collections. For example we could quickly look at the mean number of downloads for the datasets in our collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "502.6923076923077"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from statistics import mean\n",
    "\n",
    "mean(item.downloads for item in updated_collection.items)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We could also use other functionality from the `huggingface_hub` library to explore our collection. For example, we could use the `dataset_info` function to try and grab the language of each dataset in our collection."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "from huggingface_hub import dataset_info"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "def try_get_languages(dataset):\n",
    "    try:\n",
    "        return dataset_info(dataset.id).cardData[\"language\"]\n",
    "    except KeyError:\n",
    "        return None"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[['en'],\n",
       " None,\n",
       " None,\n",
       " ['en'],\n",
       " None,\n",
       " ['en'],\n",
       " ['en'],\n",
       " None,\n",
       " None,\n",
       " None,\n",
       " ['en'],\n",
       " None,\n",
       " None]"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "[try_get_languages(dataset) for dataset in datasets]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see here that of the datasets in our collection which have language information, the most common language is English. Quite a few of the datasets in our collection don't have language information. This might be a good opportunity to contribute to the datasets by adding language information to them! "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "qwedsacf/grade-school-math-instructions has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/qwedsacf/grade-school-math-instructions/edit/main/README.md \n",
      "HuggingFaceH4/instruction-dataset has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/HuggingFaceH4/instruction-dataset/edit/main/README.md \n",
      "ArmelR/stack-exchange-instruction has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/edit/main/README.md \n",
      "openllmplayground/pandagpt_visual_instruction_dataset has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/openllmplayground/pandagpt_visual_instruction_dataset/edit/main/README.md \n",
      "rewoo/planner_instruction_tuning_2k has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/rewoo/planner_instruction_tuning_2k/edit/main/README.md \n",
      "LinkSoul/instruction_merge_set has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/LinkSoul/instruction_merge_set/edit/main/README.md \n",
      "TokenBender/code_instructions_122k_alpaca_style has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/TokenBender/code_instructions_122k_alpaca_style/edit/main/README.md \n",
      "codefuse-ai/Evol-instruction-66k has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/codefuse-ai/Evol-instruction-66k/edit/main/README.md \n"
     ]
    }
   ],
   "source": [
    "for dataset in datasets:\n",
    "    language = try_get_languages(dataset)\n",
    "    if language is None:\n",
    "        print(\n",
    "            f\"{dataset.id} has no language and could benefit from a PR to add it! Here is the url to fix it: https://huggingface.co/datasets/{dataset.id}/edit/main/README.md \"\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Looking at the collection on the Hub\n",
    "\n",
    "We can also take a look at our collection on the Hub. We can quickly get to the URL for our collection on the Hub using the `url` attribute of our `Collection` object."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'https://huggingface.co/collections/librarian-bots/top-10-instruction-tuning-datasets-65117eeaca29f41ae7ae39fe'"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "updated_collection.url"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Conclusion and other things to try\n",
    "\n",
    "In this tutorial we've seen how to use the `huggingface_hub` library to create a collection that curates the top 10% most used instruction tuning datasets on the Hub. We've also seen how we can use the `huggingface_hub` library to explore our collection and the datasets in it.\n",
    "\n",
    "There are many potential opportunities to build on this approach to automatically/semi-automatically curate useful collections. If you come up with a cool use case for this approach, we'd love to hear about it! You can ping me on Twitter ([@vanstriendaniel](https://twitter.com/vanstriendaniel)) or you can add to this [Discussion](https://huggingface.co/spaces/librarian-bots/tutorials/discussions/1)."
   ]
  }
 ],
 "metadata": {
  "colab": {
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.1"
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "023691d310634e6e83da20b9575759a2": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "055c0da20e264ec896963f9edf372a7d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "077012b6f63e4148848c9b9e8726fb18": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_37807c4db5834365b86bc92c36835220",
      "placeholder": "​",
      "style": "IPY_MODEL_847b9e4085814f958a147286be4f56eb",
      "value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
     }
    },
    "09ca4ed6420340e0b76d64949301bed4": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "14f46443f97c4b4fb46c5967aec1178f": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": "center",
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": "flex",
      "flex": null,
      "flex_flow": "column",
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "50%"
     }
    },
    "15032b9578124624bcc42771cb5d5ad8": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "16bb0f6cf2a04a78a1f76d9fd2ddb74a": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "18f533e671114b6385428a534364f10a": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_5aaff54fecb84936a8dc9fee4393494d",
      "placeholder": "​",
      "style": "IPY_MODEL_aee4b5a2e361451dae879f37222245f3",
      "value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
     }
    },
    "2b3d0284c2ce49fb86c2da7d1ea327b7": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_7e7bb5e6d08842bdbd1b6ec41ae5b6e2",
      "placeholder": "​",
      "style": "IPY_MODEL_2e120a36c40f43118699e1c4615d1332",
      "value": " 340426/? [00:53&lt;00:00, 6620.19it/s]"
     }
    },
    "2e120a36c40f43118699e1c4615d1332": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "3592ba829079449583dda09d0e5aba1a": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HTMLModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HTMLModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HTMLView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_16bb0f6cf2a04a78a1f76d9fd2ddb74a",
      "placeholder": "​",
      "style": "IPY_MODEL_9b26690a9e244eb5b8eb737eedebf9c9",
      "value": ""
     }
    },
    "3634abd523b7477082a0a8135f1fa770": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "37807c4db5834365b86bc92c36835220": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "38e81f2aed79485498035e9c418165b4": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ButtonStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ButtonStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "button_color": null,
      "font_weight": ""
     }
    },
    "3b77fe48c5e44c879998de497be7a381": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "428d3687eb4342e59d23318099afe34f": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "VBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "VBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "VBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_862cc50e401845fa98054e6bd015a074",
       "IPY_MODEL_4fe39f9b54474fb4966f71c7df0cf93e",
       "IPY_MODEL_d97e9b98cade45eaa2b9b526b1a4bb98",
       "IPY_MODEL_b7f608ef35d84fd7a736260236025429"
      ],
      "layout": "IPY_MODEL_14f46443f97c4b4fb46c5967aec1178f"
     }
    },
    "4fc0c071d3f24730ab9264ea62092d76": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "HBoxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "HBoxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "HBoxView",
      "box_style": "",
      "children": [
       "IPY_MODEL_3592ba829079449583dda09d0e5aba1a",
       "IPY_MODEL_e2c41567b4eb400ba534374edb3a0df9",
       "IPY_MODEL_2b3d0284c2ce49fb86c2da7d1ea327b7"
      ],
      "layout": "IPY_MODEL_c26831761f8e4fdf9477663d15d95e78"
     }
    },
    "4fe39f9b54474fb4966f71c7df0cf93e": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "LabelModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "LabelModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "LabelView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_055c0da20e264ec896963f9edf372a7d",
      "placeholder": "​",
      "style": "IPY_MODEL_d0f55244ec614704a571f920ffa27bfd",
      "value": "Your token has been saved in your configured git credential helpers (store)."
     }
    },
    "5aaff54fecb84936a8dc9fee4393494d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "6efac326ad7946e3a9ecc22b50568633": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "LabelModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "LabelModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "LabelView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_9d043d68e16440899a6fc9b740f5970d",
      "placeholder": "​",
      "style": "IPY_MODEL_88242ee08b884098ad743c1738b7dc97",
      "value": "Connecting..."
     }
    },
    "7e7bb5e6d08842bdbd1b6ec41ae5b6e2": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "847b9e4085814f958a147286be4f56eb": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "862cc50e401845fa98054e6bd015a074": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "LabelModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "LabelModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "LabelView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_09ca4ed6420340e0b76d64949301bed4",
      "placeholder": "​",
      "style": "IPY_MODEL_b2261f5044db4af0bed02f76115d08f9",
      "value": "Token is valid (permission: write)."
     }
    },
    "88242ee08b884098ad743c1738b7dc97": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "8851c4aa5ec04a368d518110692e1d67": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ProgressStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ProgressStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "bar_color": null,
      "description_width": ""
     }
    },
    "934d899f6c604fa1bf4a8108aa09b190": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "9b26690a9e244eb5b8eb737eedebf9c9": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "9d043d68e16440899a6fc9b740f5970d": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "9d970a88c8c04bc586473251393aaec7": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "CheckboxModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "CheckboxModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "CheckboxView",
      "description": "Add token as git credential?",
      "description_tooltip": null,
      "disabled": false,
      "indent": true,
      "layout": "IPY_MODEL_023691d310634e6e83da20b9575759a2",
      "style": "IPY_MODEL_dded08e463404a53abb86ac605968626",
      "value": true
     }
    },
    "9d99d6e39a424145b017abff9021d9a0": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "9dfa5a7ee7794a5d8396674db2c0b683": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "9f8288bb8cae4796a067580ff7afce69": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "ButtonModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "ButtonModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ButtonView",
      "button_style": "",
      "description": "Login",
      "disabled": false,
      "icon": "",
      "layout": "IPY_MODEL_9d99d6e39a424145b017abff9021d9a0",
      "style": "IPY_MODEL_38e81f2aed79485498035e9c418165b4",
      "tooltip": ""
     }
    },
    "a264d9f9f65846f9b606dd4e3e7eda8e": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": "20px"
     }
    },
    "aee4b5a2e361451dae879f37222245f3": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "b2261f5044db4af0bed02f76115d08f9": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "b7f608ef35d84fd7a736260236025429": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "LabelModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "LabelModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "LabelView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_eca43f65d6c1407bbb16cd26f60d5b7f",
      "placeholder": "​",
      "style": "IPY_MODEL_934d899f6c604fa1bf4a8108aa09b190",
      "value": "Login successful"
     }
    },
    "c26831761f8e4fdf9477663d15d95e78": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    },
    "d0f55244ec614704a571f920ffa27bfd": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "d97e9b98cade45eaa2b9b526b1a4bb98": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "LabelModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "LabelModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "LabelView",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_3b77fe48c5e44c879998de497be7a381",
      "placeholder": "​",
      "style": "IPY_MODEL_15032b9578124624bcc42771cb5d5ad8",
      "value": "Your token has been saved to /root/.cache/huggingface/token"
     }
    },
    "dded08e463404a53abb86ac605968626": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "DescriptionStyleModel",
     "state": {
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "DescriptionStyleModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "StyleView",
      "description_width": ""
     }
    },
    "e2c41567b4eb400ba534374edb3a0df9": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "FloatProgressModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "FloatProgressModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "ProgressView",
      "bar_style": "success",
      "description": "",
      "description_tooltip": null,
      "layout": "IPY_MODEL_a264d9f9f65846f9b606dd4e3e7eda8e",
      "max": 1,
      "min": 0,
      "orientation": "horizontal",
      "style": "IPY_MODEL_8851c4aa5ec04a368d518110692e1d67",
      "value": 1
     }
    },
    "e4c0e23001254742a94898203a222c6c": {
     "model_module": "@jupyter-widgets/controls",
     "model_module_version": "1.5.0",
     "model_name": "PasswordModel",
     "state": {
      "_dom_classes": [],
      "_model_module": "@jupyter-widgets/controls",
      "_model_module_version": "1.5.0",
      "_model_name": "PasswordModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/controls",
      "_view_module_version": "1.5.0",
      "_view_name": "PasswordView",
      "continuous_update": true,
      "description": "Token:",
      "description_tooltip": null,
      "disabled": false,
      "layout": "IPY_MODEL_9dfa5a7ee7794a5d8396674db2c0b683",
      "placeholder": "​",
      "style": "IPY_MODEL_3634abd523b7477082a0a8135f1fa770",
      "value": ""
     }
    },
    "eca43f65d6c1407bbb16cd26f60d5b7f": {
     "model_module": "@jupyter-widgets/base",
     "model_module_version": "1.2.0",
     "model_name": "LayoutModel",
     "state": {
      "_model_module": "@jupyter-widgets/base",
      "_model_module_version": "1.2.0",
      "_model_name": "LayoutModel",
      "_view_count": null,
      "_view_module": "@jupyter-widgets/base",
      "_view_module_version": "1.2.0",
      "_view_name": "LayoutView",
      "align_content": null,
      "align_items": null,
      "align_self": null,
      "border": null,
      "bottom": null,
      "display": null,
      "flex": null,
      "flex_flow": null,
      "grid_area": null,
      "grid_auto_columns": null,
      "grid_auto_flow": null,
      "grid_auto_rows": null,
      "grid_column": null,
      "grid_gap": null,
      "grid_row": null,
      "grid_template_areas": null,
      "grid_template_columns": null,
      "grid_template_rows": null,
      "height": null,
      "justify_content": null,
      "justify_items": null,
      "left": null,
      "margin": null,
      "max_height": null,
      "max_width": null,
      "min_height": null,
      "min_width": null,
      "object_fit": null,
      "object_position": null,
      "order": null,
      "overflow": null,
      "overflow_x": null,
      "overflow_y": null,
      "padding": null,
      "right": null,
      "top": null,
      "visibility": null,
      "width": null
     }
    }
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}