File size: 3,860 Bytes
13dd954
 
84bfe38
 
 
 
 
 
13dd954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bfe38
 
 
 
13dd954
 
84bfe38
24f13dd
13dd954
 
84bfe38
 
 
13dd954
 
 
05ceda0
84bfe38
13dd954
 
 
 
 
 
84bfe38
13dd954
 
 
 
05ceda0
13dd954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a937268
 
13dd954
 
 
 
84bfe38
13dd954
84bfe38
 
 
13dd954
 
 
84bfe38
13dd954
84bfe38
13dd954
84bfe38
13dd954
 
 
2c755e0
13dd954
 
a937268
 
 
13dd954
 
a937268
 
 
13dd954
84bfe38
13dd954
 
 
 
 
 
 
 
 
84bfe38
 
 
 
 
 
 
 
 
13dd954
84bfe38
13dd954
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from functools import lru_cache
from typing import Optional

import gradio as gr
from dotenv import load_dotenv
from qdrant_client import QdrantClient, models
from sentence_transformers import SentenceTransformer

load_dotenv()

URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
sentence_embedding_model = SentenceTransformer("BAAI/bge-large-en")

print(URL)
print(QDRANT_API_KEY)
collection_name = "dataset_cards"
client = QdrantClient(
    url=URL,
    api_key=QDRANT_API_KEY,
)


def format_results(results):
    markdown = (
        "<h1 style='text-align: center;'>  &#x2728; Dataset Search Results  &#x2728;"
        " </h1> \n\n"
    )
    for result in results:
        hub_id = result.payload["id"]
        download_number = result.payload["downloads"]
        url = f"https://huggingface.co/datasets/{hub_id}"
        header = f"## [{hub_id}]({url})"
        markdown += header + "\n"
        markdown += f"**Downloads:** {download_number}\n\n"
        markdown += f"{result.payload['section_text']} \n"

    return markdown


@lru_cache(maxsize=100_000)
def search(query: str, limit: Optional[int] = 10):
    query_ = sentence_embedding_model.encode(
        f"Represent this sentence for searching relevant passages:{query}"
    )
    results = client.search(
        collection_name="dataset_cards",
        query_vector=query_,
        limit=limit,
    )
    return format_results(results)


@lru_cache(maxsize=100_000)
def hub_id_qdrant_id(hub_id):
    matches = client.scroll(
        collection_name="dataset_cards",
        scroll_filter=models.Filter(
            must=[
                models.FieldCondition(key="id", match=models.MatchValue(value=hub_id)),
            ]
        ),
        limit=1,
        with_payload=True,
        with_vectors=False,
    )
    try:
        return matches[0][0].id
    except IndexError as e:
        raise gr.Error(
            f"Hub id {hub_id} not in out database. This could be because it is very new"
            " or because it doesn't have much documentation."
        ) from e


@lru_cache()
def recommend(hub_id, limit: Optional[int] = 10):
    positive_id = hub_id_qdrant_id(hub_id)
    results = client.recommend(
        collection_name=collection_name, positive=[positive_id], limit=limit
    )
    return format_results(results)


def query(search_term, search_type, limit: Optional[int] = 10):
    if search_type == "Recommend similar datasets":
        return recommend(search_term, limit)
    else:
        return search(search_term, limit)


with gr.Blocks() as demo:
    gr.Markdown("## &#129303; Semantic Dataset Search")
    with gr.Row():
        gr.Markdown(
            "This Gradio app allows you to search for datasets based on their"
            " descriptions. You can either search for similar datasets to a given"
            " dataset or search for datasets based on a query."
        )
    with gr.Row():
        search_term = gr.Textbox(
            value="movie review sentiment",
            label="hub id i.e. IMDB or query i.e. movie review sentiment",
        )

    with gr.Row():
        with gr.Row():
            find_similar_btn = gr.Button("Search")
            search_type = gr.Radio(
                ["Recommend similar datasets", "Semantic Search"],
                label="Search type",
                value="Semantic Search",
                interactive=True,
            )
        with gr.Column():
            max_results = gr.Slider(
                minimum=1,
                maximum=50,
                step=1,
                value=10,
                label="Maximum number of results",
                help="This is the maximum number of results that will be returned",
            )
    results = gr.Markdown()
    find_similar_btn.click(query, [search_term, search_type, max_results], results)


demo.launch()