File size: 3,860 Bytes
13dd954 84bfe38 13dd954 84bfe38 13dd954 84bfe38 24f13dd 13dd954 84bfe38 13dd954 05ceda0 84bfe38 13dd954 84bfe38 13dd954 05ceda0 13dd954 a937268 13dd954 84bfe38 13dd954 84bfe38 13dd954 84bfe38 13dd954 84bfe38 13dd954 84bfe38 13dd954 2c755e0 13dd954 a937268 13dd954 a937268 13dd954 84bfe38 13dd954 84bfe38 13dd954 84bfe38 13dd954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
from functools import lru_cache
from typing import Optional
import gradio as gr
from dotenv import load_dotenv
from qdrant_client import QdrantClient, models
from sentence_transformers import SentenceTransformer
load_dotenv()
URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
sentence_embedding_model = SentenceTransformer("BAAI/bge-large-en")
print(URL)
print(QDRANT_API_KEY)
collection_name = "dataset_cards"
client = QdrantClient(
url=URL,
api_key=QDRANT_API_KEY,
)
def format_results(results):
markdown = (
"<h1 style='text-align: center;'> ✨ Dataset Search Results ✨"
" </h1> \n\n"
)
for result in results:
hub_id = result.payload["id"]
download_number = result.payload["downloads"]
url = f"https://huggingface.co/datasets/{hub_id}"
header = f"## [{hub_id}]({url})"
markdown += header + "\n"
markdown += f"**Downloads:** {download_number}\n\n"
markdown += f"{result.payload['section_text']} \n"
return markdown
@lru_cache(maxsize=100_000)
def search(query: str, limit: Optional[int] = 10):
query_ = sentence_embedding_model.encode(
f"Represent this sentence for searching relevant passages:{query}"
)
results = client.search(
collection_name="dataset_cards",
query_vector=query_,
limit=limit,
)
return format_results(results)
@lru_cache(maxsize=100_000)
def hub_id_qdrant_id(hub_id):
matches = client.scroll(
collection_name="dataset_cards",
scroll_filter=models.Filter(
must=[
models.FieldCondition(key="id", match=models.MatchValue(value=hub_id)),
]
),
limit=1,
with_payload=True,
with_vectors=False,
)
try:
return matches[0][0].id
except IndexError as e:
raise gr.Error(
f"Hub id {hub_id} not in out database. This could be because it is very new"
" or because it doesn't have much documentation."
) from e
@lru_cache()
def recommend(hub_id, limit: Optional[int] = 10):
positive_id = hub_id_qdrant_id(hub_id)
results = client.recommend(
collection_name=collection_name, positive=[positive_id], limit=limit
)
return format_results(results)
def query(search_term, search_type, limit: Optional[int] = 10):
if search_type == "Recommend similar datasets":
return recommend(search_term, limit)
else:
return search(search_term, limit)
with gr.Blocks() as demo:
gr.Markdown("## 🤗 Semantic Dataset Search")
with gr.Row():
gr.Markdown(
"This Gradio app allows you to search for datasets based on their"
" descriptions. You can either search for similar datasets to a given"
" dataset or search for datasets based on a query."
)
with gr.Row():
search_term = gr.Textbox(
value="movie review sentiment",
label="hub id i.e. IMDB or query i.e. movie review sentiment",
)
with gr.Row():
with gr.Row():
find_similar_btn = gr.Button("Search")
search_type = gr.Radio(
["Recommend similar datasets", "Semantic Search"],
label="Search type",
value="Semantic Search",
interactive=True,
)
with gr.Column():
max_results = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=10,
label="Maximum number of results",
help="This is the maximum number of results that will be returned",
)
results = gr.Markdown()
find_similar_btn.click(query, [search_term, search_type, max_results], results)
demo.launch()
|