Spaces:
Runtime error
Runtime error
File size: 8,890 Bytes
9a6e4f2 8fbb0f5 963c322 9a6e4f2 8fbb0f5 963c322 8fbb0f5 9a6e4f2 55877ba 963c322 7098224 8fbb0f5 963c322 41212e8 963c322 c882e97 7098224 9a6e4f2 55877ba c882e97 8fbb0f5 33c1203 8fbb0f5 c882e97 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 fc341f3 33c1203 c882e97 8fbb0f5 33c1203 8fbb0f5 c882e97 8fbb0f5 9a6e4f2 7098224 9a6e4f2 8fbb0f5 9a6e4f2 c882e97 8fbb0f5 9a6e4f2 8fbb0f5 41212e8 8fbb0f5 55877ba 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 33c1203 8fbb0f5 c882e97 8fbb0f5 e6064e2 8fbb0f5 e6064e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import asyncio
import concurrent.futures
import json
import logging
import os
import sqlite3
from contextlib import asynccontextmanager
from typing import List
import numpy as np
from apscheduler.schedulers.asyncio import AsyncIOScheduler
from apscheduler.triggers.cron import CronTrigger
from cashews import NOT_NONE, cache
from fastapi import FastAPI, HTTPException, Query
from huggingface_hub import login, upload_file
from pandas import Timestamp
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from data_loader import refresh_data
login(token=os.getenv("HF_TOKEN"))
UPDATE_SCHEDULE = {"hour": os.getenv("UPDATE_INTERVAL_HOURS", "*/6")}
cache.setup("mem://?check_interval=10&size=10000")
logger = logging.getLogger(__name__)
def get_db_connection():
conn = sqlite3.connect("datasets.db")
conn.row_factory = sqlite3.Row
conn.execute("PRAGMA journal_mode = WAL")
conn.execute("PRAGMA synchronous = NORMAL")
return conn
def setup_database():
conn = get_db_connection()
c = conn.cursor()
c.execute(
"""CREATE TABLE IF NOT EXISTS datasets
(hub_id TEXT PRIMARY KEY,
likes INTEGER,
downloads INTEGER,
tags JSON,
created_at INTEGER,
last_modified INTEGER,
license JSON,
language JSON,
config_name TEXT,
column_names JSON,
features JSON)"""
)
c.execute(
"""
CREATE INDEX IF NOT EXISTS idx_column_names
ON datasets(column_names)
"""
)
c.execute(
"""
CREATE INDEX IF NOT EXISTS idx_downloads_likes
ON datasets(downloads DESC, likes DESC)
"""
)
conn.commit()
c.execute("ANALYZE")
conn.close()
def serialize_numpy(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, Timestamp):
return int(obj.timestamp())
logger.error(f"Object of type {type(obj)} is not JSON serializable")
raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
def background_refresh_data():
logger.info("Starting background data refresh")
try:
return refresh_data()
except Exception as e:
logger.error(f"Error in background data refresh: {str(e)}")
return None
async def update_database():
logger.info("Starting scheduled data refresh")
# Run refresh_data in a background thread
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(background_refresh_data)
# Wait for the background task to complete, but allow for cancellation
try:
datasets = await asyncio.get_event_loop().run_in_executor(
None, future.result
)
except asyncio.CancelledError:
future.cancel()
logger.info("Data refresh cancelled")
return
if datasets is None:
logger.error("Data refresh failed, skipping database update")
return
conn = get_db_connection()
try:
c = conn.cursor()
c.executemany(
"""
INSERT OR REPLACE INTO datasets
(hub_id, likes, downloads, tags, created_at, last_modified, license, language, config_name, column_names, features)
VALUES (?, ?, ?, json(?), ?, ?, json(?), json(?), ?, json(?), json(?))
""",
[
(
data["hub_id"],
data.get("likes", 0),
data.get("downloads", 0),
json.dumps(data.get("tags", []), default=serialize_numpy),
int(data["created_at"].timestamp())
if isinstance(data["created_at"], Timestamp)
else data.get("created_at", 0),
int(data["last_modified"].timestamp())
if isinstance(data["last_modified"], Timestamp)
else data.get("last_modified", 0),
json.dumps(data.get("license", []), default=serialize_numpy),
json.dumps(data.get("language", []), default=serialize_numpy),
data.get("config_name", ""),
json.dumps(data.get("column_names", []), default=serialize_numpy),
json.dumps(data.get("features", []), default=serialize_numpy),
)
for data in datasets
],
)
conn.commit()
logger.info("Scheduled data refresh completed")
except Exception as e:
logger.error(f"Error during database update: {str(e)}")
conn.rollback()
finally:
conn.close()
# Upload the database file to Hugging Face Hub
try:
upload_file(
path_or_fileobj="datasets.db",
path_in_repo="datasets.db",
repo_id="librarian-bots/column-db",
repo_type="dataset",
)
logger.info("Database file uploaded to Hugging Face Hub successfully")
except Exception as e:
logger.error(f"Error uploading database file to Hugging Face Hub: {str(e)}")
@asynccontextmanager
async def lifespan(app: FastAPI):
setup_database()
logger.info("Performing initial data refresh")
await update_database()
# Set up the scheduler
scheduler = AsyncIOScheduler()
# Schedule the update_database function using the UPDATE_SCHEDULE configuration
scheduler.add_job(update_database, CronTrigger(**UPDATE_SCHEDULE))
scheduler.start()
yield
scheduler.shutdown()
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
class SearchResponse(BaseModel):
total: int
page: int
page_size: int
results: List[dict]
@cache(ttl="1h", condition=NOT_NONE)
@app.get("/search", response_model=SearchResponse)
async def search_datasets(
columns: List[str] = Query(...),
match_all: bool = Query(False),
page: int = Query(1, ge=1),
page_size: int = Query(10, ge=1, le=1000),
):
offset = (page - 1) * page_size
conn = get_db_connection()
c = conn.cursor()
try:
if match_all:
query = """
SELECT *, (
SELECT COUNT(*)
FROM json_each(column_names)
WHERE json_each.value IN ({})
) as match_count
FROM datasets
WHERE match_count = ?
ORDER BY downloads DESC, likes DESC
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, len(columns), page_size, offset))
else:
query = """
SELECT * FROM datasets
WHERE EXISTS (
SELECT 1
FROM json_each(column_names)
WHERE json_each.value IN ({})
)
ORDER BY downloads DESC, likes DESC
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, page_size, offset))
results = [dict(row) for row in c.fetchall()]
# Get total count
if match_all:
count_query = """
SELECT COUNT(*) as total FROM datasets
WHERE (
SELECT COUNT(*)
FROM json_each(column_names)
WHERE json_each.value IN ({})
) = ?
""".format(",".join("?" * len(columns)))
c.execute(count_query, (*columns, len(columns)))
else:
count_query = """
SELECT COUNT(*) as total FROM datasets
WHERE EXISTS (
SELECT 1
FROM json_each(column_names)
WHERE json_each.value IN ({})
)
""".format(",".join("?" * len(columns)))
c.execute(count_query, columns)
total = c.fetchone()["total"]
for result in results:
result["tags"] = json.loads(result["tags"])
result["license"] = json.loads(result["license"])
result["language"] = json.loads(result["language"])
result["column_names"] = json.loads(result["column_names"])
result["features"] = json.loads(result["features"])
return SearchResponse(
total=total, page=page, page_size=page_size, results=results
)
except sqlite3.Error as e:
logger.error(f"Database error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") from e
finally:
conn.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|