File size: 4,036 Bytes
310dfa4
 
 
 
 
 
 
 
9ce3fb9
310dfa4
9ce3fb9
310dfa4
 
206a7be
310dfa4
206a7be
310dfa4
 
 
 
206a7be
310dfa4
 
 
9ce3fb9
 
 
 
310dfa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206a7be
310dfa4
 
 
 
 
 
 
 
 
 
 
 
 
206a7be
310dfa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb4ea3
 
310dfa4
 
1eb4ea3
310dfa4
1eb4ea3
 
 
 
 
310dfa4
1eb4ea3
310dfa4
 
9ce3fb9
310dfa4
9ce3fb9
 
 
 
 
310dfa4
1eb4ea3
310dfa4
 
 
 
 
9ce3fb9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from huggingface_hub import list_datasets, list_models
from cachetools import TTLCache, cached
import platform
import re
import gradio as gr
from huggingface_hub import get_collection
from cytoolz import groupby
from collections import defaultdict
import os

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
is_macos = platform.system() == "Darwin"
LIMIT = None
CACHE_TIME = 60 * 5

@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def get_models():
    return list(iter(list_models(full=True, limit=LIMIT)))


@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def get_datasets():
    return list(iter(list_datasets(full=True, limit=LIMIT)))


get_models()  # warm up the cache
get_datasets()  # warm up the cache


def check_for_arxiv_id(model):
    return [tag for tag in model.tags if "arxiv" in tag] if model.tags else False


def extract_arxiv_id(input_string: str) -> str:
    # Define the regular expression pattern
    pattern = re.compile(r"\barxiv:(\d+\.\d+)\b")

    # Search for the pattern in the input string
    match = pattern.search(input_string)

    # If a match is found, return the numeric part of the ARXIV ID, else return None
    return match[1] if match else None


@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def create_model_to_arxiv_id_dict():
    models = get_models()
    model_to_arxiv_id = {}
    for model in models:
        if arxiv_papers := check_for_arxiv_id(model):
            clean_arxiv_ids = []
            for paper in arxiv_papers:
                if arxiv_id := extract_arxiv_id(paper):
                    clean_arxiv_ids.append(arxiv_id)
            model_to_arxiv_id[model.modelId] = clean_arxiv_ids
    return model_to_arxiv_id


@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def create_dataset_to_arxiv_id_dict():
    datasets = get_datasets()
    dataset_to_arxiv_id = {}
    for dataset in datasets:
        if arxiv_papers := check_for_arxiv_id(dataset):
            clean_arxiv_ids = []
            for paper in arxiv_papers:
                if arxiv_id := extract_arxiv_id(paper):
                    clean_arxiv_ids.append(arxiv_id)
            dataset_to_arxiv_id[dataset.id] = clean_arxiv_ids
    return dataset_to_arxiv_id


url = "lunarflu/ai-podcasts-and-talks-65119866353a60593bf99c58"


def group_collection_items(collection_slug: str):
    collection = get_collection(collection_slug)
    items = collection.items
    return groupby(lambda x: f"{x.repoType}s", items)


def get_papers_for_collection(collection_slug: str):
    dataset_to_arxiv_id = create_dataset_to_arxiv_id_dict()
    models_to_arxiv_id = create_model_to_arxiv_id_dict()
    collection = group_collection_items(collection_slug)
    collection_datasets = collection.get("datasets", None)
    collection_models = collection.get("models", None)
    dataset_papers = defaultdict(dict)
    model_papers = defaultdict(dict)
    if collection_datasets is not None:
        for dataset in collection_datasets:
            if arxiv_ids := dataset_to_arxiv_id.get(dataset.item_id, None):
                data = {
                    "arxiv_ids": arxiv_ids,
                    "hub_paper_links": [
                        f"https://huggingface.co/papers/{arxiv_id}"
                        for arxiv_id in arxiv_ids
                    ],
                }
                dataset_papers[dataset.item_id] = data
    if collection_models is not None:
        for model in collection.get("models", []):
            if arxiv_ids := models_to_arxiv_id.get(model.item_id, None):
                data = {
                    "arxiv_ids": arxiv_ids,
                    "hub_paper_links": [
                        f"https://huggingface.co/papers/{arxiv_id}"
                        for arxiv_id in arxiv_ids
                    ],
                }
                model_papers[model.item_id] = data
    return {"datasets": dataset_papers, "models": model_papers}


url = "HF-IA-archiving/models-to-archive-65006a7fdadb8c628f33aac9"

gr.Interface(get_papers_for_collection, "text", "json").launch()