File size: 10,457 Bytes
c0ec7e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22761bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
import torch.nn as nn
import torch.nn.functional as F
import math


class TransformerCPI(nn.Module):
    def __init__(self, protein_dim, hidden_dim, n_layers, kernel_size, dropout, n_heads, pf_dim, atom_dim=34):
        super().__init__()

        self.encoder = Encoder(protein_dim, hidden_dim, n_layers, kernel_size, dropout)
        self.decoder = Decoder(atom_dim, hidden_dim, n_layers, n_heads, pf_dim, dropout)
        self.weight = nn.Parameter(torch.FloatTensor(atom_dim, atom_dim))
        self.init_weight()

    def init_weight(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)

    def gcn(self, input, adj):
        # input =[batch,num_node, atom_dim]
        # adj = [batch,num_node, num_node]
        support = torch.matmul(input, self.weight)
        # support =[batch,num_node,atom_dim]
        output = torch.bmm(adj.float(), support.float())
        # output = [batch,num_node,atom_dim]
        return output

    def forward(self, compound, protein):
        compound, adj = compound
        compound, compound_lengths = compound
        adj, _ = adj
        protein, protein_lengths = protein
        # compound = [batch,atom_num, atom_dim]
        # adj = [batch,atom_num, atom_num]
        # protein = [batch,protein len, 100]
        compound_mask = torch.arange(compound.size(1), device=compound.device) >= compound_lengths.unsqueeze(1)
        protein_mask = torch.arange(protein.size(1), device=protein.device) >= protein_lengths.unsqueeze(1)
        compound_mask = compound_mask.unsqueeze(1).unsqueeze(3)
        protein_mask = protein_mask.unsqueeze(1).unsqueeze(2)

        compound = self.gcn(compound.float(), adj)
        # compound = torch.unsqueeze(compound, dim=0)
        # compound = [batch size=1 ,atom_num, atom_dim]

        # protein = torch.unsqueeze(protein, dim=0)
        # protein =[ batch size=1,protein len, protein_dim]
        enc_src = self.encoder(protein)
        # enc_src = [batch size, protein len, hid dim]

        out = self.decoder(compound, enc_src, compound_mask, protein_mask)
        # out = [batch size, 2]
        # out = torch.squeeze(out, dim=0)
        return out


class SelfAttention(nn.Module):
    def __init__(self, hidden_dim, n_heads, dropout):
        super().__init__()

        self.hidden_dim = hidden_dim
        self.n_heads = n_heads

        assert hidden_dim % n_heads == 0

        self.w_q = nn.Linear(hidden_dim, hidden_dim)
        self.w_k = nn.Linear(hidden_dim, hidden_dim)
        self.w_v = nn.Linear(hidden_dim, hidden_dim)

        self.fc = nn.Linear(hidden_dim, hidden_dim)

        self.do = nn.Dropout(dropout)

        self.scale = (hidden_dim // n_heads) ** 0.5

    def forward(self, query, key, value, mask=None):
        bsz = query.shape[0]

        # query = key = value [batch size, sent len, hid dim]

        q = self.w_q(query)
        k = self.w_k(key)
        v = self.w_v(value)

        # q, k, v = [batch size, sent len, hid dim]

        q = q.view(bsz, -1, self.n_heads, self.hidden_dim // self.n_heads).permute(0, 2, 1, 3)
        k = k.view(bsz, -1, self.n_heads, self.hidden_dim // self.n_heads).permute(0, 2, 1, 3)
        v = v.view(bsz, -1, self.n_heads, self.hidden_dim // self.n_heads).permute(0, 2, 1, 3)

        # k, v = [batch size, n heads, sent len_K, hid dim // n heads]
        # q = [batch size, n heads, sent len_q, hid dim // n heads]
        energy = torch.matmul(q, k.permute(0, 1, 3, 2)) / self.scale

        # energy = [batch size, n heads, sent len_Q, sent len_K]
        if mask is not None:
            energy = energy.masked_fill(mask == 0, -1e10)

        attention = self.do(F.softmax(energy, dim=-1))

        # attention = [batch size, n heads, sent len_Q, sent len_K]

        x = torch.matmul(attention, v)

        # x = [batch size, n heads, sent len_Q, hid dim // n heads]

        x = x.permute(0, 2, 1, 3).contiguous()

        # x = [batch size, sent len_Q, n heads, hid dim // n heads]

        x = x.view(bsz, -1, self.n_heads * (self.hidden_dim // self.n_heads))

        # x = [batch size, src sent len_Q, hid dim]

        x = self.fc(x)

        # x = [batch size, sent len_Q, hid dim]

        return x


class Encoder(nn.Module):
    """protein feature extraction."""
    def __init__(self, protein_dim, hidden_dim, n_layers, kernel_size, dropout):
        super().__init__()

        assert kernel_size % 2 == 1, "Kernel size must be odd (for now)"

        self.input_dim = protein_dim
        self.hidden_dim = hidden_dim
        self.kernel_size = kernel_size
        self.dropout = dropout
        self.n_layers = n_layers
        # self.pos_embedding = nn.Embedding(1000, hidden_dim)
        self.scale = 0.5 ** 0.5
        self.convs = nn.ModuleList(
            [nn.Conv1d(hidden_dim, 2 * hidden_dim, kernel_size, padding=(kernel_size - 1) // 2) for _ in
             range(self.n_layers)])  # convolutional layers
        self.dropout = nn.Dropout(dropout)
        self.fc = nn.Linear(self.input_dim, self.hidden_dim)
        self.gn = nn.GroupNorm(8, hidden_dim * 2)
        self.ln = nn.LayerNorm(hidden_dim)

    def forward(self, protein):
        # pos = torch.arange(0, protein.shape[1]).unsqueeze(0).repeat(protein.shape[0], 1)
        # protein = protein + self.pos_embedding(pos)
        # protein = [batch size, protein len,protein_dim]
        conv_input = self.fc(protein.float())
        # conv_input=[batch size,protein len,hid dim]
        # permute for convolutional layer
        conv_input = conv_input.permute(0, 2, 1)
        # conv_input = [batch size, hid dim, protein len]
        for i, conv in enumerate(self.convs):
            # pass through convolutional layer
            conved = conv(self.dropout(conv_input))
            # conved = [batch size, 2*hid dim, protein len]

            # pass through GLU activation function
            conved = F.glu(conved, dim=1)
            # conved = [batch size, hid dim, protein len]

            # apply residual connection / high way
            conved = (conved + conv_input) * self.scale
            # conved = [batch size, hid dim, protein len]

            # set conv_input to conved for next loop iteration
            conv_input = conved

        conved = conved.permute(0, 2, 1)
        # conved = [batch size,protein len,hid dim]
        conved = self.ln(conved)
        return conved


class PositionwiseFeedforward(nn.Module):
    def __init__(self, hidden_dim, pf_dim, dropout):
        super().__init__()

        self.hidden_dim = hidden_dim
        self.pf_dim = pf_dim

        self.fc_1 = nn.Conv1d(hidden_dim, pf_dim, 1)  # convolution neural units
        self.fc_2 = nn.Conv1d(pf_dim, hidden_dim, 1)  # convolution neural units

        self.do = nn.Dropout(dropout)

    def forward(self, x):
        # x = [batch size, sent len, hid dim]
        x = x.permute(0, 2, 1)  # x = [batch size, hid dim, sent len]
        x = self.do(F.relu(self.fc_1(x)))  # x = [batch size, pf dim, sent len]
        x = self.fc_2(x)  # x = [batch size, hid dim, sent len]
        x = x.permute(0, 2, 1)  # x = [batch size, sent len, hid dim]

        return x


class DecoderLayer(nn.Module):
    def __init__(self, hidden_dim, n_heads, pf_dim, dropout,
                 self_attention=SelfAttention,
                 positionwise_feedforward=PositionwiseFeedforward):
        super().__init__()
        self.ln = nn.LayerNorm(hidden_dim)
        self.sa = self_attention(hidden_dim, n_heads, dropout)
        self.ea = self_attention(hidden_dim, n_heads, dropout)
        self.pf = positionwise_feedforward(hidden_dim, pf_dim, dropout)
        self.do = nn.Dropout(dropout)

    def forward(self, trg, src, trg_mask=None, src_mask=None):
        # trg = [batch_size, compound len, atom_dim]
        # src = [batch_size, protein len, hidden_dim] # encoder output
        # trg_mask = [batch size, compound sent len]
        # src_mask = [batch size, protein len]
        trg = self.ln(trg + self.do(self.sa(trg, trg, trg, trg_mask)))
        trg = self.ln(trg + self.do(self.ea(trg, src, src, src_mask)))
        trg = self.ln(trg + self.do(self.pf(trg)))

        return trg


class Decoder(nn.Module):
    """ compound feature extraction."""

    def __init__(self, atom_dim, hidden_dim, n_layers, n_heads, pf_dim, dropout,
                 decoder_layer=DecoderLayer,
                 self_attention=SelfAttention,
                 positionwise_feedforward=PositionwiseFeedforward):
        super().__init__()
        self.ln = nn.LayerNorm(hidden_dim)
        self.output_dim = atom_dim
        self.hidden_dim = hidden_dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.pf_dim = pf_dim
        self.decoder_layer = decoder_layer
        self.self_attention = self_attention
        self.positionwise_feedforward = positionwise_feedforward
        self.dropout = dropout
        self.sa = self_attention(hidden_dim, n_heads, dropout)
        self.layers = nn.ModuleList(
            [decoder_layer(hidden_dim, n_heads, pf_dim, dropout, self_attention, positionwise_feedforward)
             for _ in range(n_layers)])
        self.ft = nn.Linear(atom_dim, hidden_dim)
        self.do = nn.Dropout(dropout)
        self.fc_1 = nn.Linear(hidden_dim, 256)
        # self.fc_2 = nn.Linear(256, 2)
        self.gn = nn.GroupNorm(8, 256)

    def forward(self, trg, src, trg_mask=None, src_mask=None):
        # trg = [batch_size, compound len, atom_dim]
        # src = [batch_size, protein len, hidden_dim] # encoder output
        trg = self.ft(trg)  # trg = [batch size, compound len, hid dim]

        for layer in self.layers:
            trg = layer(trg, src, trg_mask, src_mask)  # trg = [batch size, compound len, hid dim]
        """Use norm to determine which atom is significant. """
        norm = torch.norm(trg, dim=2)  # norm = [batch size,compound len]
        norm = F.softmax(norm, dim=1)  # norm = [batch size,compound len]
        # trg = torch.squeeze(trg,dim=0)
        # norm = torch.squeeze(norm,dim=0)
        sum = torch.zeros((trg.shape[0], self.hidden_dim), device=trg.device)
        for i in range(norm.shape[0]):
            for j in range(norm.shape[1]):
                v = trg[i, j,]
                v = v * norm[i, j]
                sum[i,] += v  # sum = [batch size,hidden_dim]
        label = F.relu(self.fc_1(sum))
        # label = self.fc_2(label)
        return label