Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,849 Bytes
c0ec7e6 d0473a1 c0ec7e6 d0473a1 c0ec7e6 d0473a1 c0ec7e6 d0473a1 c0ec7e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import re
from functools import partial
from numbers import Number
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Union, Literal
from lightning import LightningDataModule
import pandas as pd
import swifter
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset, DataLoader
from deepscreen.data.utils import label_transform, collate_fn, SafeBatchSampler
from deepscreen.utils import get_logger
log = get_logger(__name__)
SMILES_PAT = r"[^A-Za-z0-9=#:+\-\[\]<>()/\\@%,.*]"
FASTA_PAT = r"[^A-Z*\-]"
def validate_seq_str(seq, regex):
if seq:
err_charset = set(re.findall(regex, seq))
if not err_charset:
return None
else:
return ', '.join(err_charset)
else:
return 'Empty string'
# TODO: save a list of corrupted records
def rdkit_canonicalize(smiles):
from rdkit import Chem
try:
mol = Chem.MolFromSmiles(smiles)
cano_smiles = Chem.MolToSmiles(mol)
return cano_smiles
except Exception as e:
log.warning(f'Failed to canonicalize SMILES using RDKIT due to {str(e)}. Returning original SMILES: {smiles}')
return smiles
class DTIDataset(Dataset):
def __init__(
self,
task: Literal['regression', 'binary', 'multiclass'],
num_classes: Optional[int],
data_path: str | Path,
drug_featurizer: callable,
protein_featurizer: callable,
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
discard_intermediate: Optional[bool] = False,
query: Optional[str] = 'X2'
):
df = pd.read_csv(
data_path,
engine='python',
header=0,
usecols=lambda x: x in ['X1', 'ID1', 'X2', 'ID2', 'Y', 'U'],
dtype={
'X1': 'str',
'ID1': 'str',
'X2': 'str',
'ID2': 'str',
'Y': 'float32',
'U': 'str',
},
)
# Read the whole data table
# if 'ID1' in df:
# self.x1_to_id1 = dict(zip(df['X1'], df['ID1']))
# if 'ID2' in df:
# self.x2_to_id2 = dict(zip(df['X2'], df['ID2']))
# self.id2_to_indexes = dict(zip(df['ID2'], range(len(df['ID2']))))
# self.x2_to_indexes = dict(zip(df['X2'], range(len(df['X2']))))
# # train and eval mode data processing (fully labelled)
# if 'Y' in df.columns and df['Y'].notnull().all():
log.info(f"Processing data file: {data_path}")
# Forward-fill all non-label columns
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
# TODO potentially allow running through the whole data validation process
# error = False
if 'Y' in df:
log.info(f"Validating labels (`Y`)...")
# TODO: check sklearn.utils.multiclass.check_classification_targets
match task:
case 'regression':
assert all(df['Y'].swifter.apply(lambda x: isinstance(x, Number))), \
f"""`Y` must be numeric for `regression` task,
but it has {set(df['Y'].swifter.apply(type))}."""
case 'binary':
if all(df['Y'].isin([0, 1])):
assert not thresholds, \
f"""`Y` is already 0 or 1 for `binary` (classification) `task`,
but still got `thresholds` ({thresholds}).
Double check your choices of `task` and `thresholds`, and records in the `Y` column."""
else:
assert thresholds, \
f"""`Y` must be 0 or 1 for `binary` (classification) `task`,
but it has {pd.unique(df['Y'])}.
You may set `thresholds` to discretize continuous labels.""" # TODO print err idx instead
case 'multiclass':
assert num_classes >= 3, f'`num_classes` for `task=multiclass` must be at least 3.'
if all(df['Y'].swifter.apply(lambda x: x.is_integer() and x >= 0)):
assert not thresholds, \
f"""`Y` is already non-negative integers for
`multiclass` (classification) `task`, but still got `thresholds` ({thresholds}).
Double check your choice of `task`, `thresholds` and records in the `Y` column."""
else:
assert thresholds, \
f"""`Y` must be non-negative integers for
`multiclass` (classification) 'task',but it has {pd.unique(df['Y'])}.
You must set `thresholds` to discretize continuous labels.""" # TODO print err idx instead
if 'U' in df.columns:
units = df['U']
else:
units = None
log.warning("Units ('U') not in the data table. "
"Assuming all labels to be discrete or in p-scale (-log10[M]).")
# Transform labels
df['Y'] = label_transform(labels=df['Y'], units=units, thresholds=thresholds,
discard_intermediate=discard_intermediate)
# Filter out rows with a NaN in Y (missing values)
df.dropna(subset=['Y'], inplace=True)
match task:
case 'regression':
df['Y'] = df['Y'].astype('float32')
assert all(df['Y'].swifter.apply(lambda x: isinstance(x, Number))), \
f"""`Y` must be numeric for `regression` task,
but after transformation it still has {set(df['Y'].swifter.apply(type))}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
# TODO print err idx instead
case 'binary':
df['Y'] = df['Y'].astype('int')
assert all(df['Y'].isin([0, 1])), \
f"""`Y` must be 0 or 1 for `task=binary`, "
but after transformation it still has {pd.unique(df['Y'])}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
# TODO print err idx instead
case 'multiclass':
df['Y'] = df['Y'].astype('int')
assert all(df['Y'].swifter.apply(lambda x: x.is_integer() and x >= 0)), \
f"""Y must be non-negative integers for `task=multiclass`
but after transformation it still has {pd.unique(df['Y'])}.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
# TODO print err idx instead
target_n_unique = df['Y'].nunique()
assert target_n_unique == num_classes, \
f"""You have set `num_classes` for `task=multiclass` to {num_classes},
but after transformation Y still has {target_n_unique} unique labels.
Double check your choices of `task` and `thresholds` and records in the `Y` and `U` columns."""
log.info("Validating SMILES (`X1`)...")
df['X1_ERR'] = df['X1'].swifter.progress_bar(
desc="Validating SMILES...").apply(validate_seq_str, regex=SMILES_PAT)
if not df['X1_ERR'].isna().all():
raise Exception(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
df['X1^'] = df['X1'].apply(rdkit_canonicalize) # swifter
log.info("Validating FASTA (`X2`)...")
df['X2'] = df['X2'].str.upper()
df['X2_ERR'] = df['X2'].swifter.progress_bar(
desc="Validating FASTA...").apply(validate_seq_str, regex=FASTA_PAT)
if not df['X2_ERR'].isna().all():
raise Exception(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
# FASTA/SMILES indices as query for retrieval metrics like enrichment factor and hit rate
if query:
df['ID^'] = LabelEncoder().fit_transform(df[query])
self.df = df
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
self.protein_featurizer = protein_featurizer if protein_featurizer is not None else (lambda x: x)
def __len__(self):
return len(self.df.index)
def __getitem__(self, i):
sample = self.df.loc[i]
sample_dict = {
'N': i,
'X1': sample['X1'],
'X1^': self.drug_featurizer(sample['X1^']),
# 'ID1': sample.get('ID1'),
'X2': sample['X2'],
'X2^': self.protein_featurizer(sample['X2']),
# 'ID2': sample.get('ID2'),
# 'Y': sample.get('Y'),
# 'ID^': sample.get('ID^'),
}
optional_keys = ['ID1', 'ID2', 'ID^', 'Y']
sample_dict.update({key: sample[key] for key in optional_keys if sample.get(key) is not None})
return sample_dict
class DTIDataModule(LightningDataModule):
"""
DTI DataModule
A DataModule implements 5 key methods:
def prepare_data(self):
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
# download data, pre-process, split, save to disk, etc.
def setup(self, stage):
# things to do on every process in DDP
# load data, set variables, etc.
def train_dataloader(self):
# return train dataloader
def val_dataloader(self):
# return validation dataloader
def test_dataloader(self):
# return test dataloader
def teardown(self):
# called on every process in DDP
# clean up after fit or test
This allows you to share a full dataset without explaining how to download,
split, transform and process the data.
Read the docs:
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
"""
def __init__(
self,
task: Literal['regression', 'binary', 'multiclass'],
num_classes: Optional[int],
batch_size: int,
# train: bool,
drug_featurizer: callable,
protein_featurizer: callable,
collator: callable = collate_fn,
data_dir: str = "data/",
data_file: Optional[str] = None,
train_val_test_split: Optional[Union[Sequence[Number | str]]] = None,
split: Optional[callable] = None,
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
discard_intermediate: Optional[bool] = False,
num_workers: int = 0,
pin_memory: bool = False,
):
super().__init__()
self.train_data: Optional[Dataset] = None
self.val_data: Optional[Dataset] = None
self.test_data: Optional[Dataset] = None
self.predict_data: Optional[Dataset] = None
self.split = split
self.collator = collator
self.dataset = partial(
DTIDataset,
task=task,
num_classes=num_classes,
drug_featurizer=drug_featurizer,
protein_featurizer=protein_featurizer,
thresholds=thresholds,
discard_intermediate=discard_intermediate
)
# this line allows to access init params with 'self.hparams' ensures init params will be stored in ckpt
self.save_hyperparameters(logger=False) # ignore=['split']
def prepare_data(self):
"""
Download data if needed.
Do not use it to assign state (e.g., self.x = x).
"""
def setup(self, stage: Optional[str] = None, encoding: str = None):
"""
Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
careful not to execute data splitting twice.
"""
# load and split datasets only if not loaded in initialization
if not any([self.train_data, self.test_data, self.val_data, self.predict_data]):
if self.hparams.train_val_test_split:
if len(self.hparams.train_val_test_split) != 3:
raise ValueError('Length of `train_val_test_split` must be 3. '
'Set the second element to None for training without validation. '
'Set the third element to None for training without testing.')
self.train_data = self.hparams.train_val_test_split[0]
self.val_data = self.hparams.train_val_test_split[1]
self.test_data = self.hparams.train_val_test_split[2]
if all([self.hparams.data_file, self.split]):
if all(isinstance(split, Number) or split is None
for split in self.hparams.train_val_test_split):
split_data = self.split(
dataset=self.dataset(data_path=Path(self.hparams.data_dir, self.hparams.data_file)),
lengths=[split for split in self.hparams.train_val_test_split if split is not None]
)
for dataset in ['train_data', 'val_data', 'test_data']:
if getattr(self, dataset) is not None:
setattr(self, dataset, split_data.pop(0))
else:
raise ValueError('`train_val_test_split` must be a sequence numbers or None'
'(float for percentages and int for sample numbers) '
'if both `data_file` and `split` have been specified.')
elif (all(isinstance(split, str) or split is None
for split in self.hparams.train_val_test_split)
and not any([self.hparams.data_file, self.split])):
for dataset in ['train_data', 'val_data', 'test_data']:
if getattr(self, dataset) is not None:
data_path = Path(getattr(self, dataset))
if not data_path.is_absolute():
data_path = Path(self.hparams.data_dir, data_path)
setattr(self, dataset, self.dataset(data_path=data_path))
else:
raise ValueError('For training, you must specify either all of `data_file`, `split`, '
'and `train_val_test_split` as a sequence of numbers or '
'solely `train_val_test_split` as a sequence of data file paths.')
elif self.hparams.data_file and not any([self.split, self.hparams.train_val_test_split]):
data_path = Path(self.hparams.data_file)
if not data_path.is_absolute():
data_path = Path(self.hparams.data_dir, data_path)
self.test_data = self.predict_data = self.dataset(data_path=data_path)
else:
raise ValueError("For training, you must specify `train_val_test_split`. "
"For testing/predicting, you must specify only `data_file` without "
"`train_val_test_split` or `split`.")
def train_dataloader(self):
return DataLoader(
dataset=self.train_data,
batch_sampler=SafeBatchSampler(
data_source=self.train_data,
batch_size=self.hparams.batch_size,
# Dropping the last batch prevents problems caused by variable batch sizes in training, e.g.,
# batch_size=1 in BatchNorm, and shuffling ensures the model be trained on all samples over epochs.
drop_last=True,
shuffle=True,
),
# batch_size=self.hparams.batch_size,
# shuffle=True,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def val_dataloader(self):
return DataLoader(
dataset=self.val_data,
batch_sampler=SafeBatchSampler(
data_source=self.val_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def test_dataloader(self):
return DataLoader(
dataset=self.test_data,
batch_sampler=SafeBatchSampler(
data_source=self.test_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def predict_dataloader(self):
return DataLoader(
dataset=self.predict_data,
batch_sampler=SafeBatchSampler(
data_source=self.predict_data,
batch_size=self.hparams.batch_size,
drop_last=False,
shuffle=False
),
# batch_size=self.hparams.batch_size,
# shuffle=False,
num_workers=self.hparams.num_workers,
pin_memory=self.hparams.pin_memory,
collate_fn=self.collator,
persistent_workers=True if self.hparams.num_workers > 0 else False
)
def teardown(self, stage: Optional[str] = None):
"""Clean up after fit or test."""
pass
def state_dict(self):
"""Extra things to save to checkpoint."""
return {}
def load_state_dict(self, state_dict: Dict[str, Any]):
"""Things to do when loading checkpoint."""
pass
|