Spaces:
Running
Running
File size: 17,138 Bytes
c1e3e0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import streamlit as st
import pandas as pd
import plotly.express as px
import datetime as dt
from datetime import datetime
from library import *
st.set_page_config(
page_title="GitHub Analytics Dashboard",
layout="wide",
page_icon="π"
)
st.title("π Repo Radar")
st.text("""
This website provides a thorough analysis of the most popular open-source Github repositories.
Skip the search and start buliding with Repo Radar!!!
Our data was last updated on May 2025.
""")
import streamlit as st
repo_data = pd.read_csv('repo_data_clean.csv', sep=';')
usage_data = repo_data.iloc[:, [1, -5, 18, 19, -8, -4, -6, -7, 3, -3, -2]]
usage_data.iloc[:, 1:-3] = usage_data.iloc[:, 1:-3].map(parse_to_list)
usage_data['Main Programming Language'] = usage_data['Main Programming Language'].map(lambda x: x[0] if isinstance(x, list) else x)
all_prog_langs = extract_unique(repo_data['Programming Languages used'].map(parse_to_list))
# Problema - [Solucinado]: Detectaba 'java' y 'javascript' como iguales
count_langs = lambda column: {key: len(repo_data[repo_data[column].str.contains(fr'\b{key}\b', na = False)]) \
for key in all_prog_langs}
tabs = st.tabs(['π Find your repo', 'π Data Analysis', "π¨ What's next?"])
with tabs[0]:
st.header('What repo are you looking for?')
name = st.text_input('Name', placeholder = 'Do you know the name of the repo?')
col1, col2 = st.columns(2)
col3, col4 = st.columns(2)
with col1:
cats = st.multiselect('Categories',
placeholder = "What's it for?",
options=extract_unique(usage_data['Category']))
with col2:
nat_langs = st.multiselect('Languages available:',
placeholder = "What language do you speak?",
options=extract_unique(usage_data['Languages Available']))
with col3:
platforms = st.multiselect('Platform',
placeholder = "What platform is it available on?",
options=extract_unique(usage_data['Platforms']))
with col4:
tecs = st.multiselect('Techniques',
placeholder = "What techniques does it use?",
options=extract_unique(usage_data['Techniques used']))
prog_langs = st.multiselect('Programming Languages used:',
placeholder = "In what language was it written?",
options=extract_unique(usage_data['Programming Languages used']))
usage_filtered = usage_data
if any([name, cats, nat_langs, platforms, tecs, prog_langs]):
if name:
usage_filtered = usage_filtered[usage_filtered['Name'].str.contains(name.strip('\\'), case = False, na = False)]
if cats:
usage_filtered = usage_filtered[usage_filtered['Category'].apply(filter(cats))]
if nat_langs:
usage_filtered = usage_filtered[usage_filtered['Languages Available'].apply(filter(nat_langs))]
if platforms:
usage_filtered = usage_filtered[usage_filtered['Platforms'].apply(filter(platforms))]
if tecs:
usage_filtered = usage_filtered[usage_filtered['Techniques used'].apply(filter(tecs))]
if prog_langs:
usage_filtered = usage_filtered[usage_filtered['Programming Languages used'].apply(filter(prog_langs))]
df_event = st.dataframe(usage_filtered.iloc[:, :-3],
key = 'repo',
hide_index = True,
on_select = 'rerun',
selection_mode = 'single-row')
with st.expander('REPO DATA', expanded = True):
if df_event.selection['rows']:
index = df_event.selection['rows'][0]
repo_name = usage_filtered.iloc[index]['Name']
current_repo = lambda column: repo_data.loc[repo_data['Name'] == repo_name, column].values[0]
st.header(f'{repo_name}')
col5, col6 = st.columns(2, border=True)
with col5:
st.header('Repo Description: ')
st.subheader('Purpose')
st.write(current_repo('purpose'))
st.subheader('Functionality')
st.write(current_repo('functionality'))
with col6:
col7, col8 = st.columns(2)
with col7:
st.subheader('Stars:')
st.text(current_repo('stars'))
st.subheader('Forks:')
st.text(current_repo('forks'))
st.subheader('Ist.session_stateues:')
st.text(current_repo('open_issues'))
st.subheader('Created:')
st.text(parse_date(current_repo('created_at')))
with col8:
st.subheader('Pull Requests:')
st.text(current_repo('pull_requests'))
st.subheader('Subscribers: ')
st.text(current_repo('subscribers_count'))
st.subheader('License:')
st.text(current_repo('License'))
st.subheader('Last Updated:')
st.text(parse_date(current_repo('updated_at')))
st.subheader(f"URL link: {current_repo('url')}")
else:
st.subheader("Select a Repo to view it's data")
st.text('You can select a repo by clicking on the checkbox in the first column of the DataFrame')
with tabs[1]:
st.header("π» GitHub Analytics Dashboard")
st.text('Open the sidebar to use our filters')
st.subheader("π Programming Languages Distribution")
# Setting up the dataframes:
language_count = count_langs('Programming Languages used')
as_main_language = count_langs('Main Programming Language')
sort_criteria = st.selectbox('Sort by:',
options=['Times Used', 'Times Used as Main Language' ],
)
sort_parsed = 'As Main' if sort_criteria == 'Times Used as Main Language' else sort_criteria
language_count = pd.DataFrame(
{'Language': list(language_count.keys()),
'Times Used': list(language_count.values()),
'Used %': [num/len(repo_data) for num in language_count.values()],
'As Main': list(as_main_language.values()),
'As Main %': [num/len(repo_data) for num in as_main_language.values()]
}).sort_values(sort_parsed, ascending=False,)
license_stats = pd.merge(
pd.DataFrame(repo_data['License'].value_counts()),
pd.DataFrame(repo_data['License'].value_counts(normalize=True)),
left_index=True,
right_index=True
).reset_index()
license_stats.columns = ['License', 'Count', 'Percent']
# Filters
with st.sidebar:
if 'max_repos' not in st.session_state:
st.session_state.max_repos = int(language_count['Times Used'].max())
min_repos = st.slider(
"Minimum repositories",
min_value=1,
max_value=int(language_count['Times Used'].max()),
value=15
)
st.session_state.max_repos = st.slider(
"Maximum repositories",
min_value=min_repos,
max_value=int(language_count['Times Used'].max()),
value=st.session_state.max_repos
)
filtered_lang_count = language_count[language_count['Times Used'] >= min_repos]
filtered_lang_count = filtered_lang_count[filtered_lang_count['Times Used'] <= st.session_state.max_repos]
filtered_licenses = license_stats[license_stats['Count'] >= min_repos]
filtered_licenses = filtered_licenses[filtered_licenses['Count'] <= st.session_state.max_repos]
col1, col2 = st.columns(2, border=True)
with col1:
st.subheader("Frequency Table")
st.dataframe(
filtered_lang_count.style.format({'Used %': '{:.2%}', 'As Main %': '{:.2%}'}),
use_container_width=True,
hide_index= True,
)
with col2:
st.subheader("Top Languages")
top_lang = st.slider('Amount of languages shown:', 5, 20,12)
fig = px.bar(
filtered_lang_count.head(top_lang),
x='Language',
y=['Times Used', 'As Main'],
barmode = 'overlay',
color='Language',
text_auto=True,
hover_name='Language',
hover_data={
'Used %': ':.2%', 'As Main %': ':.2%',
}
)
fig.update_traces(
# texttemplate='%{text:.2%}',
textposition='outside',
showlegend = False
)
fig.update_layout(
xaxis_title="Programming Language",
yaxis_title="Count",
)
st.plotly_chart(fig, use_container_width=True)
with st.expander("π See More", expanded=False):
st.subheader('π² Tree Map Visualization')
st.text(f'Viewing and sorting by: {sort_criteria}')
fig_tree = px.treemap(
filtered_lang_count,
names='Language',
values=sort_parsed,
path = ['Language', sort_parsed],
hover_name='Language',
hover_data={
'Times Used': True, 'As Main': True,
'Used %': ':.2%', 'As Main %': ':.2%'}
)
fig_tree.update_layout(
height = 400,
margin = dict(l=0,r=0,b=40,t=0)
)
st.plotly_chart(fig_tree, use_container_width=True)
""" --------------------------------------------------------------------- """
st.subheader("π Software License Distribution")
fig = px.bar(
filtered_licenses.sort_values('Count', ascending=True),
x='Count',
y='License',
orientation='h',
color='Count',
text='Percent',
color_continuous_scale='Teal',
labels={'Count': 'Number of Repos'},
hover_data={'Percent': ':.2%'}
)
fig.update_traces(
texttemplate='%{text:.2%}',
textposition='outside'
)
fig.update_layout(
yaxis={'categoryorder':'total ascending'},
height=500
)
st.plotly_chart(fig, use_container_width=True)
with st.expander("π§© See More", expanded=False):
col1, col2 = st.columns(2, border = True)
with col1:
st.subheader('π Tabular Data')
st.dataframe(
filtered_licenses.style.format({'Percent': '{:.2%}'}),
use_container_width=True,
)
with col2:
st.subheader('π³ Tree Map Visualization')
fig_tree = px.treemap(
filtered_licenses,
names='License',
values='Count',
path = ['License'],
hover_name='License',
hover_data={'Percent': ':.2%'},
)
fig_tree.update_layout(
height = 600,
margin = dict(l=0,r=0,b=40,t=0)
)
st.plotly_chart(fig_tree, use_container_width=True)
""" ----------------------------------------------------------------------- """
st.subheader("π§ Repo Stats According to License and Language")
metrics_options = ['Forks', 'Pull Requests', 'Stars', 'Open Issues']
parsed_options = [metric.lower().replace(' ', '_') for metric in metrics_options]
metric_choice = st.multiselect(
"Select Stats to compare",
options=metrics_options,
default=metrics_options[:3],
)
parsed_choices = [metric.lower().replace(' ', '_') for metric in metric_choice]
measurement = st.selectbox('How do you want to group the data',
options = ['Mean', 'Median', 'Total'])
if metric_choice:
big_number = max(repo_data[metric].max() for metric in parsed_options)
if not 'min_threshold' in st.session_state:
st.session_state.min_threshold = big_number//50
if not 'max_threshold' in st.session_state:
st.session_state.max_threshold = big_number
col1, col2 = st.columns(2)
with col1:
st.session_state.min_threshold = st.number_input(f"Minimum quantity of {', '.join(metric_choice)}:", 1, big_number, st.session_state.min_threshold, step=1000)
with col2:
st.session_state.max_threshold = st.number_input(f"Maximum quantity of {', '.join(metric_choice)}:", 1, big_number, st.session_state.max_threshold, step=1000)
condition = ((repo_data[parsed_choices] >= st.session_state.min_threshold) & (repo_data[parsed_choices] <= st.session_state.max_threshold)).all(axis=1)
metrics_df = repo_data[['Main Programming Language', 'License'] + parsed_choices]
metrics_df = metrics_df[condition]
if measurement == 'Mean':
lang_metrics = metrics_df.groupby(['Main Programming Language'], as_index=False)[parsed_choices].mean()
license_metrics = metrics_df.groupby(['License'], as_index=False)[parsed_choices].mean()
elif measurement == 'Median':
lang_metrics = metrics_df.groupby(['Main Programming Language'], as_index=False)[parsed_choices].median()
license_metrics = metrics_df.groupby(['License'], as_index=False)[parsed_choices].median()
else:
license_metrics = lang_metrics = metrics_df
top_bars = st.slider(
'Amount of languages/licenses to show:',
4, 100, 10)
col3, col4 = st.columns(2, border=True)
with col3:
st.subheader('By Main Language')
fig = px.bar(
lang_metrics.sort_values(parsed_choices[0], ascending=False).head(top_bars),
x='Main Programming Language',
y=parsed_choices,
barmode='group',
color_discrete_sequence=px.colors.qualitative.Pastel,
labels={'value': 'Count', 'variable': 'Metric', 'Main Programming Language': 'Language'}
)
fig.update_layout(
xaxis_title="Programming Language",
yaxis_title="Count",
hovermode="x unified"
)
st.plotly_chart(fig, use_container_width=True)
with col4:
st.subheader('By License')
fig = px.bar(
license_metrics.sort_values(parsed_choices[0], ascending=False).head(top_bars),
x='License',
y=parsed_choices,
barmode='group',
color_discrete_sequence=px.colors.qualitative.Pastel,
labels={'value': 'Count', 'variable': 'Metric', 'Main Programming Language': 'Language'}
)
fig.update_layout(
xaxis_title="License",
yaxis_title="Count",
hovermode="x unified"
)
st.plotly_chart(fig, use_container_width=True)
with st.expander("π See aggregated data:"):
agg_df = metrics_df.groupby(['License','Main Programming Language'])[parsed_choices].sum().sort_values(parsed_choices[0], ascending=False)
st.dataframe(
agg_df.style.background_gradient(cmap='Blues'),
use_container_width=True
)
else:
st.warning("Please select at least one metric to visualize")
with tabs[2]:
st.header('We are still not done!!!')
st.markdown('''
We will be upgrading this website soon.\n
Stay tuned for more updates.\n
\n
πΈ Follow us on instagram:\n
https://www.instagram.com/ds.open.source/
\n
π Keep in touch with our Github repository if you want to see how we code:\n
https://github.com/liandeveloper/open_source/
''')
# quant_1 = st.selectbox('1',
# options = ['Stars','Forks', 'Ist.session_stateues', 'Pull Requests']
# )
# quant_2 = st.selectbox('2',
# options = ['Stars','Forks', 'Ist.session_stateues', 'Pull Requests'])
# quali_1 =st.selectbox('3',
# options = ['License','Main Programming Language'])
# qn1_p = 'open_ist.session_stateues' if quant_1 == 'Ist.session_stateues' else quant_1.replace(' ', '_').lower()
# qn2_p = 'open_ist.session_stateues' if quant_2 == 'Ist.session_stateues' else quant_2.replace(' ', '_').lower()
# ql1_p = 'License' if quali_1 == 'License' else quali_1
# st.plotly_chart(px.scatter(
# repo_data,
# x=qn1_p, y=qn2_p,
# labels = [quant_1, quant_2],
# color = ql1_p
# )
# )
# st.dataframe(repo_data) |