File size: 17,138 Bytes
c1e3e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import streamlit as st
import pandas as pd
import plotly.express as px
import datetime as dt
from datetime import datetime
from library import *

st.set_page_config(
    page_title="GitHub Analytics Dashboard",
    layout="wide",
    page_icon="πŸ“Š"
)

st.title("πŸš€ Repo Radar")
st.text("""

This website provides a thorough analysis of the most popular open-source Github repositories.

Skip the search and start buliding with Repo Radar!!!

Our data was last updated on May 2025.

""")

import streamlit as st

repo_data = pd.read_csv('repo_data_clean.csv', sep=';')

usage_data = repo_data.iloc[:, [1, -5, 18, 19, -8, -4, -6, -7, 3, -3, -2]]
usage_data.iloc[:, 1:-3] = usage_data.iloc[:, 1:-3].map(parse_to_list)

usage_data['Main Programming Language'] = usage_data['Main Programming Language'].map(lambda x: x[0] if isinstance(x, list) else x)

all_prog_langs = extract_unique(repo_data['Programming Languages used'].map(parse_to_list))

# Problema - [Solucinado]: Detectaba 'java' y 'javascript' como iguales
count_langs = lambda column: {key: len(repo_data[repo_data[column].str.contains(fr'\b{key}\b', na = False)]) \
                    for key in all_prog_langs}

tabs = st.tabs(['πŸ”Ž Find your repo', 'πŸ“ˆ Data Analysis', "🚨 What's next?"])

with tabs[0]:
    st.header('What repo are you looking for?')

    name = st.text_input('Name', placeholder = 'Do you know the name of the repo?')

    col1, col2 = st.columns(2)
    col3, col4 = st.columns(2)

    with col1:
        cats = st.multiselect('Categories',
            placeholder = "What's  it for?",
            options=extract_unique(usage_data['Category']))
    with col2:
        nat_langs = st.multiselect('Languages available:',
            placeholder = "What language do you speak?",
            options=extract_unique(usage_data['Languages Available']))
    with col3:
        platforms = st.multiselect('Platform',
            placeholder = "What platform is it available on?",
            options=extract_unique(usage_data['Platforms']))
    with col4:
        tecs = st.multiselect('Techniques',
            placeholder = "What techniques does it use?",
            options=extract_unique(usage_data['Techniques used']))
        
    prog_langs = st.multiselect('Programming Languages used:',
            placeholder = "In what language was it written?",
            options=extract_unique(usage_data['Programming Languages used']))
    
    usage_filtered = usage_data
    if any([name, cats, nat_langs, platforms, tecs, prog_langs]):
        if name:
            usage_filtered = usage_filtered[usage_filtered['Name'].str.contains(name.strip('\\'), case = False, na = False)]
        if cats:
            usage_filtered = usage_filtered[usage_filtered['Category'].apply(filter(cats))]
        if nat_langs:
            usage_filtered = usage_filtered[usage_filtered['Languages Available'].apply(filter(nat_langs))]
        if platforms:
            usage_filtered = usage_filtered[usage_filtered['Platforms'].apply(filter(platforms))]
        if tecs:
            usage_filtered = usage_filtered[usage_filtered['Techniques used'].apply(filter(tecs))]
        if prog_langs:
            usage_filtered = usage_filtered[usage_filtered['Programming Languages used'].apply(filter(prog_langs))]

    df_event = st.dataframe(usage_filtered.iloc[:, :-3], 
                 key = 'repo',
                 hide_index = True, 
                 on_select = 'rerun',
                 selection_mode = 'single-row')
    

    with st.expander('REPO DATA', expanded = True):
        if df_event.selection['rows']:
            index = df_event.selection['rows'][0]
            repo_name = usage_filtered.iloc[index]['Name']
            current_repo = lambda column: repo_data.loc[repo_data['Name'] == repo_name, column].values[0]
            st.header(f'{repo_name}')
            col5, col6 = st.columns(2, border=True)
            with col5:
                st.header('Repo Description: ')
                st.subheader('Purpose')
                st.write(current_repo('purpose'))
                st.subheader('Functionality')
                st.write(current_repo('functionality'))
            with col6:
                col7, col8 = st.columns(2)
                with col7:
                    st.subheader('Stars:')
                    st.text(current_repo('stars'))
                    st.subheader('Forks:')
                    st.text(current_repo('forks'))
                    st.subheader('Ist.session_stateues:')
                    st.text(current_repo('open_issues'))
                    st.subheader('Created:')
                    st.text(parse_date(current_repo('created_at')))
                with col8:
                    st.subheader('Pull Requests:')
                    st.text(current_repo('pull_requests'))
                    st.subheader('Subscribers: ')
                    st.text(current_repo('subscribers_count'))
                    st.subheader('License:')
                    st.text(current_repo('License'))
                    st.subheader('Last Updated:')
                    st.text(parse_date(current_repo('updated_at')))
            
            st.subheader(f"URL link: {current_repo('url')}")
        else:
            st.subheader("Select a Repo to view it's data")
            st.text('You can select a repo by clicking on the checkbox in the first column of the DataFrame')

with tabs[1]:
    st.header("πŸ’» GitHub Analytics Dashboard")
    st.text('Open the sidebar to use our filters')
    st.subheader("πŸ“š Programming Languages Distribution")
    

    # Setting up the dataframes:

    language_count = count_langs('Programming Languages used')
    as_main_language = count_langs('Main Programming Language')
    
    sort_criteria = st.selectbox('Sort by:',
                    options=['Times Used', 'Times Used as Main Language' ],
                    )
    sort_parsed = 'As Main' if sort_criteria == 'Times Used as Main Language' else sort_criteria
    language_count = pd.DataFrame(
                    {'Language':  list(language_count.keys()),
                     'Times Used': list(language_count.values()),
                     'Used %': [num/len(repo_data) for num in language_count.values()],
                     'As Main': list(as_main_language.values()),
                     'As Main %': [num/len(repo_data) for num in as_main_language.values()]
                     }).sort_values(sort_parsed, ascending=False,)

    license_stats = pd.merge(
        pd.DataFrame(repo_data['License'].value_counts()),
        pd.DataFrame(repo_data['License'].value_counts(normalize=True)),
        left_index=True, 
        right_index=True
    ).reset_index()
    license_stats.columns = ['License', 'Count', 'Percent']

    # Filters
    with st.sidebar:
        if 'max_repos' not in st.session_state:
            st.session_state.max_repos = int(language_count['Times Used'].max())

        min_repos = st.slider(
            "Minimum repositories",
            min_value=1,
            max_value=int(language_count['Times Used'].max()),
            value=15
        )
        st.session_state.max_repos = st.slider(
            "Maximum repositories",
            min_value=min_repos,
            max_value=int(language_count['Times Used'].max()),
            value=st.session_state.max_repos
        )

        filtered_lang_count = language_count[language_count['Times Used'] >= min_repos]
        filtered_lang_count = filtered_lang_count[filtered_lang_count['Times Used'] <= st.session_state.max_repos]
        
        filtered_licenses = license_stats[license_stats['Count'] >= min_repos]
        filtered_licenses = filtered_licenses[filtered_licenses['Count'] <= st.session_state.max_repos]
    
    col1, col2 = st.columns(2, border=True)

    with col1:
        st.subheader("Frequency Table")
        st.dataframe(
            filtered_lang_count.style.format({'Used %': '{:.2%}', 'As Main %': '{:.2%}'}),
            use_container_width=True,
            hide_index= True,
        )

    with col2:
        st.subheader("Top Languages")
        top_lang =  st.slider('Amount of languages shown:', 5, 20,12)
        fig = px.bar(
            filtered_lang_count.head(top_lang),
            x='Language',
            y=['Times Used', 'As Main'],
            barmode = 'overlay',
            color='Language',
            text_auto=True,
            hover_name='Language',
            hover_data={
                'Used %': ':.2%', 'As Main %': ':.2%',
                }
        )
        fig.update_traces(
            # texttemplate='%{text:.2%}', 
            textposition='outside',
            showlegend = False
            )
        fig.update_layout(
            xaxis_title="Programming Language",
            yaxis_title="Count",
        )
        st.plotly_chart(fig, use_container_width=True)

    with st.expander("πŸ€„ See More", expanded=False):
        st.subheader('🌲 Tree Map Visualization')
        st.text(f'Viewing and sorting by: {sort_criteria}')
        fig_tree = px.treemap(
                filtered_lang_count,
                names='Language',
                values=sort_parsed,
                path = ['Language', sort_parsed],
                hover_name='Language',
                hover_data={
                    'Times Used': True, 'As Main': True,
                    'Used %': ':.2%', 'As Main %': ':.2%'}
        )
        fig_tree.update_layout(
            height = 400,
            margin = dict(l=0,r=0,b=40,t=0)
        )
        st.plotly_chart(fig_tree, use_container_width=True)
    """ --------------------------------------------------------------------- """

    st.subheader("πŸ“œ Software License Distribution")

    fig = px.bar(
        filtered_licenses.sort_values('Count', ascending=True),
        x='Count',
        y='License',
        orientation='h',
        color='Count',
        text='Percent',
        color_continuous_scale='Teal',
        labels={'Count': 'Number of Repos'},
        hover_data={'Percent': ':.2%'}
    )
    fig.update_traces(
        texttemplate='%{text:.2%}', 
        textposition='outside'
    )
    fig.update_layout(
        yaxis={'categoryorder':'total ascending'},
        height=500
    )
    st.plotly_chart(fig, use_container_width=True)
    with st.expander("🧩 See More", expanded=False):
        col1, col2 = st.columns(2, border = True)
        with col1:
            st.subheader('πŸ“‹ Tabular Data')
            st.dataframe(
                filtered_licenses.style.format({'Percent': '{:.2%}'}),
                use_container_width=True,
            )
        with col2:
            st.subheader('🌳 Tree Map Visualization')
            fig_tree = px.treemap(
                filtered_licenses,
                names='License',
                values='Count',
                path = ['License'],
                hover_name='License',
                hover_data={'Percent': ':.2%'},
            )
            fig_tree.update_layout(
                height = 600,
                margin = dict(l=0,r=0,b=40,t=0)
            )
            st.plotly_chart(fig_tree, use_container_width=True)
        

    """ ----------------------------------------------------------------------- """

    st.subheader("πŸ”§ Repo Stats According to License and Language")

    metrics_options = ['Forks', 'Pull Requests', 'Stars', 'Open Issues']    
    parsed_options = [metric.lower().replace(' ', '_') for metric in metrics_options]

    metric_choice = st.multiselect(
        "Select Stats to compare",
        options=metrics_options,
        default=metrics_options[:3],
    )

    parsed_choices = [metric.lower().replace(' ', '_') for metric in metric_choice]

    measurement = st.selectbox('How do you want to group the data',
                    options = ['Mean', 'Median', 'Total'])
    
    if metric_choice:
        big_number = max(repo_data[metric].max() for metric in parsed_options)

        if not 'min_threshold' in st.session_state:
            st.session_state.min_threshold = big_number//50
        if not 'max_threshold' in st.session_state:
            st.session_state.max_threshold = big_number
        

        col1, col2 = st.columns(2)
        with col1:
            st.session_state.min_threshold = st.number_input(f"Minimum quantity of {', '.join(metric_choice)}:", 1, big_number, st.session_state.min_threshold, step=1000)
        with col2:
            st.session_state.max_threshold = st.number_input(f"Maximum quantity of {', '.join(metric_choice)}:", 1, big_number, st.session_state.max_threshold, step=1000)
        
        condition = ((repo_data[parsed_choices] >= st.session_state.min_threshold) & (repo_data[parsed_choices] <= st.session_state.max_threshold)).all(axis=1)
        metrics_df = repo_data[['Main Programming Language', 'License'] + parsed_choices]
        metrics_df = metrics_df[condition]
        if measurement == 'Mean':
            lang_metrics = metrics_df.groupby(['Main Programming Language'], as_index=False)[parsed_choices].mean()
            license_metrics = metrics_df.groupby(['License'], as_index=False)[parsed_choices].mean()
        elif measurement == 'Median':
            lang_metrics = metrics_df.groupby(['Main Programming Language'], as_index=False)[parsed_choices].median()
            license_metrics = metrics_df.groupby(['License'], as_index=False)[parsed_choices].median()
        else:
            license_metrics = lang_metrics = metrics_df

        top_bars = st.slider(
            'Amount of languages/licenses to show:', 
            4, 100, 10)

        col3, col4 = st.columns(2, border=True)
        with col3:
            st.subheader('By Main Language')
            fig = px.bar(
                lang_metrics.sort_values(parsed_choices[0], ascending=False).head(top_bars),
                x='Main Programming Language',
                y=parsed_choices,
                barmode='group',
                color_discrete_sequence=px.colors.qualitative.Pastel,
                labels={'value': 'Count', 'variable': 'Metric', 'Main Programming Language': 'Language'}
            
            )
            fig.update_layout(
                xaxis_title="Programming Language",
                yaxis_title="Count",
                hovermode="x unified"
            )
            st.plotly_chart(fig, use_container_width=True)
        
        with col4:
            st.subheader('By License')
            fig = px.bar(
                license_metrics.sort_values(parsed_choices[0], ascending=False).head(top_bars),
                x='License',
                y=parsed_choices,
                barmode='group',
                color_discrete_sequence=px.colors.qualitative.Pastel,
                labels={'value': 'Count', 'variable': 'Metric', 'Main Programming Language': 'Language'}
                )
            
            fig.update_layout(
                xaxis_title="License",
                yaxis_title="Count",
                hovermode="x unified"
            )
            st.plotly_chart(fig, use_container_width=True)

        with st.expander("πŸ“Š See aggregated data:"):
            agg_df = metrics_df.groupby(['License','Main Programming Language'])[parsed_choices].sum().sort_values(parsed_choices[0], ascending=False)
            
            st.dataframe(
                agg_df.style.background_gradient(cmap='Blues'),
                use_container_width=True
            )
    else:
        st.warning("Please select at least one metric to visualize")

with tabs[2]:
    st.header('We are still not done!!!')
    st.markdown('''

    We will be upgrading this website soon.\n

    Stay tuned for more updates.\n

    \n

    πŸ“Έ Follow us on instagram:\n

    https://www.instagram.com/ds.open.source/

    \n

    πŸ‘“ Keep in touch with our Github repository if you want to see how we code:\n

    https://github.com/liandeveloper/open_source/

    ''')

    # quant_1 = st.selectbox('1',
    #     options = ['Stars','Forks', 'Ist.session_stateues', 'Pull Requests']
    #     )
    # quant_2 = st.selectbox('2',
    #     options = ['Stars','Forks', 'Ist.session_stateues', 'Pull Requests'])
    # quali_1 =st.selectbox('3',
    #     options = ['License','Main Programming Language'])
    # qn1_p = 'open_ist.session_stateues' if quant_1 == 'Ist.session_stateues' else quant_1.replace(' ', '_').lower()
    # qn2_p = 'open_ist.session_stateues' if quant_2 == 'Ist.session_stateues' else quant_2.replace(' ', '_').lower()
    # ql1_p = 'License' if quali_1 == 'License' else quali_1

    # st.plotly_chart(px.scatter(
    #     repo_data, 
    #     x=qn1_p, y=qn2_p,
    #     labels = [quant_1, quant_2],
    #     color = ql1_p
    #     )
    #     )
    # st.dataframe(repo_data)