File size: 5,144 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Clean chatbot arena chat log.

Usage:
python3 clean_chat_data.py
"""
import argparse
import datetime
import json
import os
from pytz import timezone
import time

from tqdm import tqdm

from fastchat.serve.monitor.basic_stats import NUM_SERVERS
from fastchat.serve.monitor.clean_battle_data import (
    to_openai_format,
    replace_model_name,
)
from fastchat.utils import detect_language


NETWORK_ERROR_MSG = (
    "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.".lower()
)


def get_log_files(max_num_files=None):
    dates = []
    for month in range(4, 12):
        for day in range(1, 33):
            dates.append(f"2023-{month:02d}-{day:02d}")

    filenames = []
    for d in dates:
        for i in range(NUM_SERVERS):
            name = os.path.expanduser(f"~/fastchat_logs/server{i}/{d}-conv.json")
            if os.path.exists(name):
                filenames.append(name)
    max_num_files = max_num_files or len(filenames)
    # filenames = list(reversed(filenames))
    filenames = filenames[-max_num_files:]
    return filenames


def clean_chat_data(log_files, action_type):
    raw_data = []
    for filename in tqdm(log_files, desc="read files"):
        for retry in range(5):
            try:
                lines = open(filename).readlines()
                break
            except FileNotFoundError:
                time.sleep(2)

        for l in lines:
            row = json.loads(l)
            if row["type"] == action_type:
                raw_data.append(row)

    all_models = set()
    all_ips = dict()
    chats = []
    ct_invalid_conv_id = 0
    ct_invalid = 0
    ct_network_error = 0
    for row in raw_data:
        try:
            if action_type in ["chat", "upvote", "downvote"]:
                state = row["state"]
                model = row["model"]
            elif action_type == "leftvote":
                state = row["states"][0]
                model = row["states"][0]["model_name"]
            elif action_type == "rightvote":
                state = row["states"][1]
                model = row["states"][1]["model_name"]
            conversation_id = state["conv_id"]
        except KeyError:
            ct_invalid_conv_id += 1
            continue

        if conversation_id is None:
            ct_invalid_conv_id += 1
            continue

        conversation = to_openai_format(state["messages"][state["offset"] :])
        if not isinstance(model, str):
            ct_invalid += 1
            continue
        model = replace_model_name(model, row["tstamp"])

        try:
            lang_code = detect_language(state["messages"][state["offset"]][1])
        except IndexError:
            ct_invalid += 1
            continue

        if not all(isinstance(x["content"], str) for x in conversation):
            ct_invalid += 1
            continue

        messages = "".join([x["content"] for x in conversation]).lower()
        if NETWORK_ERROR_MSG in messages:
            ct_network_error += 1
            continue

        ip = row["ip"]
        if ip not in all_ips:
            all_ips[ip] = len(all_ips)
        user_id = all_ips[ip]

        chats.append(
            dict(
                conversation_id=conversation_id,
                model=model,
                conversation=conversation,
                turn=len(conversation) // 2,
                language=lang_code,
                user_id=user_id,
                tstamp=row["tstamp"],
            )
        )

        all_models.update([model])

    chats.sort(key=lambda x: x["tstamp"])
    last_updated_tstamp = chats[-1]["tstamp"]
    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    # Deduplication
    dedup_chats = []
    visited_conv_ids = set()
    for i in reversed(range(len(chats))):
        if chats[i]["conversation_id"] in visited_conv_ids:
            continue
        visited_conv_ids.add(chats[i]["conversation_id"])
        dedup_chats.append(chats[i])

    print(
        f"#raw: {len(raw_data)}, #chat: {len(chats)}, #dedup_chat: {len(dedup_chats)}"
    )
    print(
        f"#invalid_conv_id: {ct_invalid_conv_id}, #network_error: {ct_network_error}, #invalid: {ct_invalid}"
    )
    print(f"#models: {len(all_models)}, {all_models}")
    print(f"last-updated: {last_updated_datetime}")

    return list(reversed(dedup_chats))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--action-type", type=str, default="chat")
    parser.add_argument("--max-num-files", type=int)
    args = parser.parse_args()

    log_files = get_log_files(args.max_num_files)
    chats = clean_chat_data(log_files, args.action_type)
    last_updated_tstamp = chats[-1]["tstamp"]
    cutoff_date = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y%m%d")

    output = f"clean_{args.action_type}_conv_{cutoff_date}.json"
    with open(output, "w") as fout:
        json.dump(chats, fout, indent=2, ensure_ascii=False)
    print(f"Write cleaned data to {output}")