File size: 17,356 Bytes
6dc0c9c 2238fe2 6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
"""
A model worker that executes the model based on LightLLM.
See documentations at docs/lightllm_integration.md
"""
import argparse
import asyncio
import json
import os
import torch
import uvicorn
from transformers import AutoConfig
from typing import List
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
from src.serve.base_model_worker import BaseModelWorker
from src.serve.model_worker import (
logger,
worker_id,
)
from lightllm.server.sampling_params import SamplingParams
from lightllm.server.multimodal_params import MultimodalParams
from lightllm.server.httpserver.manager import HttpServerManager
from lightllm.server.detokenization.manager import start_detokenization_process
from lightllm.server.router.manager import start_router_process
from lightllm.server.req_id_generator import ReqIDGenerator
from lightllm.utils.net_utils import alloc_can_use_network_port
from lightllm.utils.start_utils import start_submodule_processes
from fastchat.utils import get_context_length, is_partial_stop
app = FastAPI()
g_id_gen = ReqIDGenerator()
class LightLLMWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
limit_worker_concurrency: int,
no_register: bool,
conv_template: str,
tokenizer,
context_len,
):
super().__init__(
controller_addr,
worker_addr,
worker_id,
model_path,
model_names,
limit_worker_concurrency,
conv_template,
)
logger.info(
f"Loading the model {self.model_names} on worker {worker_id}, worker type: LightLLM worker..."
)
self.tokenizer = tokenizer
self.context_len = context_len
self.is_first = True
if not no_register:
self.init_heart_beat()
async def generate_stream(self, params):
self.call_ct += 1
prompt = params.pop("prompt")
request_id = params.pop("request_id")
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
top_k = params.get("top_k", -1.0)
presence_penalty = float(params.get("presence_penalty", 0.0))
frequency_penalty = float(params.get("frequency_penalty", 0.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
max_new_tokens = params.get("max_new_tokens", 256)
echo = params.get("echo", True)
stop_str = params.get("stop", None)
stop_token_ids = params.get("stop_token_ids", None) or []
if self.tokenizer.eos_token_id is not None:
stop_token_ids.append(self.tokenizer.eos_token_id)
request = params.get("request", None)
# Handle stop_str
stop = set()
if isinstance(stop_str, str) and stop_str != "":
stop.add(stop_str)
elif isinstance(stop_str, list) and stop_str != []:
stop.update(stop_str)
for tid in stop_token_ids:
if tid is not None:
s = self.tokenizer.decode(tid)
if s != "":
stop.add(s)
if self.is_first:
loop = asyncio.get_event_loop()
loop.create_task(httpserver_manager.handle_loop())
self.is_first = False
# make sampling params in vllm
top_p = max(top_p, 1e-5)
if temperature <= 1e-5:
top_p = 1.0
sampling_params = SamplingParams(
do_sample=temperature > 0.0,
temperature=temperature,
top_p=top_p,
top_k=top_k,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
repetition_penalty=repetition_penalty,
max_new_tokens=max_new_tokens,
stop_sequences=list(stop),
)
sampling_params.verify()
results_generator = httpserver_manager.generate(
prompt, sampling_params, request_id, MultimodalParams()
)
completion_tokens = 0
text_outputs = ""
cumulative_logprob = 0.0
async for request_output, metadata, finish_status in results_generator:
text_outputs += request_output
completion_tokens += 1
partial_stop = any(is_partial_stop(text_outputs, i) for i in stop)
# prevent yielding partial stop sequence
if partial_stop:
continue
if type(finish_status) is bool: # compatibility with old version
finish_reason = "stop" if finish_status else None
else:
finish_reason = finish_status.get_finish_reason()
if request and await request.is_disconnected():
await httpserver_manager.abort(request_id)
finish_reason = "abort"
logprob = metadata.get("logprob", None)
if logprob is not None:
cumulative_logprob += logprob
prompt_tokens = metadata["prompt_tokens"]
ret = {
"text": prompt + text_outputs if echo else text_outputs,
"error_code": 0,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"cumulative_logprob": cumulative_logprob,
}
if finish_reason is not None:
yield (
json.dumps({**ret, "finish_reason": None}, ensure_ascii=False)
+ "\0"
).encode("utf-8")
yield (
json.dumps({**ret, "finish_reason": finish_reason}, ensure_ascii=False)
+ "\0"
).encode("utf-8")
if finish_reason is not None: # In case of abort, we need to break the loop
break
async def generate(self, params):
async for x in self.generate_stream(params):
pass
return json.loads(x[:-1].decode())
def release_worker_semaphore():
worker.semaphore.release()
def acquire_worker_semaphore():
if worker.semaphore is None:
worker.semaphore = asyncio.Semaphore(worker.limit_worker_concurrency)
return worker.semaphore.acquire()
def create_background_tasks(request_id):
async def abort_request() -> None:
await httpserver_manager.abort(request_id)
background_tasks = BackgroundTasks()
background_tasks.add_task(release_worker_semaphore)
background_tasks.add_task(abort_request)
return background_tasks
@app.post("/worker_generate_stream")
async def api_generate_stream(request: Request):
params = await request.json()
await acquire_worker_semaphore()
request_id = g_id_gen.generate_id()
params["request_id"] = request_id
params["request"] = request
generator = worker.generate_stream(params)
background_tasks = create_background_tasks(request_id)
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_worker_semaphore()
request_id = g_id_gen.generate_id()
params["request_id"] = request_id
params["request"] = request
output = await worker.generate(params)
release_worker_semaphore()
await httpserver_manager.abort(request_id)
return JSONResponse(output)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/count_token")
async def api_count_token(request: Request):
params = await request.json()
return worker.count_token(params)
@app.post("/worker_get_conv_template")
async def api_get_conv(request: Request):
return worker.get_conv_template()
@app.post("/model_details")
async def api_model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--model-path",
dest="model_dir",
type=str,
default=None,
help="the model weight dir path, the app will load config, weights and tokenizer from this dir",
)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
parser.add_argument(
"--conv-template", type=str, default=None, help="Conversation prompt template."
)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument("--limit-worker-concurrency", type=int, default=1024)
parser.add_argument("--no-register", action="store_true")
parser.add_argument(
"--tokenizer_mode",
type=str,
default="slow",
help="""tokenizer load mode, can be slow or auto, slow mode load fast but run slow, slow mode is good for debug and test,
when you want to get best performance, try auto mode""",
)
parser.add_argument(
"--load_way",
type=str,
default="HF",
help="the way of loading model weights, the default is HF(Huggingface format), llama also supports DS(Deepspeed)",
)
parser.add_argument(
"--max_total_token_num",
type=int,
default=6000,
help="the total token nums the gpu and model can support, equals = max_batch * (input_len + output_len)",
)
parser.add_argument(
"--batch_max_tokens",
type=int,
default=None,
help="max tokens num for new cat batch, it control prefill batch size to Preventing OOM",
)
parser.add_argument("--eos_id", type=int, default=2, help="eos stop token id")
parser.add_argument(
"--running_max_req_size",
type=int,
default=1000,
help="the max size for forward requests in the same time",
)
parser.add_argument(
"--tp", type=int, default=1, help="model tp parral size, the default is 1"
)
parser.add_argument(
"--max_req_input_len",
type=int,
default=None,
help="the max value for req input tokens num. If None, it will be derived from the config.",
)
parser.add_argument(
"--max_req_total_len",
type=int,
default=None,
help="the max value for req_input_len + req_output_len. If None, it will be derived from the config.",
)
parser.add_argument(
"--mode",
type=str,
default=[],
nargs="+",
help="""Model mode: [triton_int8kv | ppl_int8kv | ppl_fp16 | triton_flashdecoding
| triton_gqa_attention | triton_gqa_flashdecoding]
[triton_int8weight | triton_int4weight | lmdeploy_int4weight | ppl_int4weight],
triton_flashdecoding mode is for long context, current support llama llama2 qwen;
triton_gqa_attention and triton_gqa_flashdecoding is fast kernel for model which use GQA;
triton_int8kv mode use int8 to store kv cache, can increase token capacity, use triton kernel;
ppl_int8kv mode use int8 to store kv cache, and use ppl fast kernel;
ppl_fp16 mode use ppl fast fp16 decode attention kernel;
triton_int8weight and triton_int4weight and lmdeploy_int4weight or ppl_int4weight mode use int8 and int4 to store weights;
you need to read source code to make sure the supported detail mode for all models""",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
)
parser.add_argument(
"--disable_log_stats",
action="store_true",
help="disable logging throughput stats.",
)
parser.add_argument(
"--log_stats_interval",
type=int,
default=10,
help="log stats interval in second.",
)
parser.add_argument(
"--router_token_ratio",
type=float,
default=0.0,
help="token ratio to control router dispatch",
)
parser.add_argument(
"--router_max_new_token_len",
type=int,
default=1024,
help="the request max new token len for router",
)
parser.add_argument(
"--no_skipping_special_tokens",
action="store_true",
help="whether to skip special tokens when decoding",
)
parser.add_argument(
"--no_spaces_between_special_tokens",
action="store_true",
help="whether to add spaces between special tokens when decoding",
)
parser.add_argument(
"--splitfuse_mode", action="store_true", help="use splitfuse mode"
)
parser.add_argument(
"--splitfuse_block_size", type=int, default=256, help="splitfuse block size"
)
parser.add_argument(
"--prompt_cache_strs",
type=str,
default=[],
nargs="+",
help="""prompt cache strs""",
)
parser.add_argument(
"--cache_capacity",
type=int,
default=200,
help="cache server capacity for multimodal resources",
)
parser.add_argument(
"--cache_reserved_ratio",
type=float,
default=0.5,
help="cache server reserved capacity ratio after clear",
)
parser.add_argument(
"--return_all_prompt_logprobs",
action="store_true",
help="return all prompt tokens logprobs",
)
parser.add_argument(
"--long_truncation_mode",
type=str,
choices=[None, "head", "center"],
default=None,
help="""use to select the handle way when input token len > max_req_input_len.
None : raise Exception
head : remove some head tokens to make input token len <= max_req_input_len
center : remove some tokens in center loc to make input token len <= max_req_input_len""",
)
args = parser.parse_args()
# 非splitfuse 模式,不支持 prompt cache 特性
if not args.splitfuse_mode:
assert len(args.prompt_cache_strs) == 0
model_config = AutoConfig.from_pretrained(args.model_dir)
context_length = get_context_length(model_config)
if args.max_req_input_len is None:
args.max_req_input_len = context_length - 1
if args.max_req_total_len is None:
args.max_req_total_len = context_length
assert args.max_req_input_len < args.max_req_total_len
assert args.max_req_total_len <= args.max_total_token_num
if not args.splitfuse_mode:
# 普通模式下
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.max_req_total_len)
args.batch_max_tokens = batch_max_tokens
else:
assert (
args.batch_max_tokens >= args.max_req_total_len
), "batch_max_tokens must >= max_req_total_len"
else:
# splitfuse 模式下
# assert args.batch_max_tokens is not None, "need to set by yourself"
if args.batch_max_tokens is None:
batch_max_tokens = int(1 / 6 * args.max_total_token_num)
batch_max_tokens = max(batch_max_tokens, args.splitfuse_block_size)
args.batch_max_tokens = batch_max_tokens
can_use_ports = alloc_can_use_network_port(num=6 + args.tp)
assert can_use_ports is not None, "Can not alloc enough free ports."
(
router_port,
detokenization_port,
httpserver_port,
visual_port,
cache_port,
nccl_port,
) = can_use_ports[0:6]
args.nccl_port = nccl_port
model_rpc_ports = can_use_ports[6:]
global httpserver_manager
httpserver_manager = HttpServerManager(
args,
router_port=router_port,
cache_port=cache_port,
visual_port=visual_port,
httpserver_port=httpserver_port,
enable_multimodal=False,
)
start_submodule_processes(
start_funcs=[start_router_process, start_detokenization_process],
start_args=[
(args, router_port, detokenization_port, model_rpc_ports),
(args, detokenization_port, httpserver_port),
],
)
worker = LightLLMWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_dir,
args.model_names,
args.limit_worker_concurrency,
args.no_register,
args.conv_template,
httpserver_manager.tokenizer,
context_length,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|