File size: 8,448 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
Usage: python launch_all_serve_by_shell.py --model-path-address "THUDM/chatglm2-6b@localhost@2021" "huggyllama/llama-7b@localhost@2022" 

Workers are listed in format of `model-path`@`host`@`port` 

The key mechanism behind this scripts is: 
    1, execute shell cmd to launch the controller/worker/openai-api-server;
    2, check the log of controller/worker/openai-api-server to ensure that the serve is launched properly.
Note that a few of non-critical `fastchat.serve` cmd options are not supported currently.
"""
import sys
import os

sys.path.append(os.path.dirname(os.path.dirname(__file__)))

import subprocess
import re
import argparse

LOGDIR = "./logs/"

if not os.path.exists(LOGDIR):
    os.makedirs(LOGDIR)

parser = argparse.ArgumentParser()
# ------multi worker-----------------
parser.add_argument(
    "--model-path-address",
    default="THUDM/chatglm2-6b@localhost@20002",
    nargs="+",
    type=str,
    help="model path, host, and port, formatted as model-path@host@port",
)
# ---------------controller-------------------------

parser.add_argument("--controller-host", type=str, default="localhost")
parser.add_argument("--controller-port", type=int, default=21001)
parser.add_argument(
    "--dispatch-method",
    type=str,
    choices=["lottery", "shortest_queue"],
    default="shortest_queue",
)
controller_args = ["controller-host", "controller-port", "dispatch-method"]

# ----------------------worker------------------------------------------

parser.add_argument("--worker-host", type=str, default="localhost")
parser.add_argument("--worker-port", type=int, default=21002)
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
# parser.add_argument(
#     "--controller-address", type=str, default="http://localhost:21001"
# )
parser.add_argument(
    "--model-path",
    type=str,
    default="lmsys/vicuna-7b-v1.5",
    help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument(
    "--revision",
    type=str,
    default="main",
    help="Hugging Face Hub model revision identifier",
)
parser.add_argument(
    "--device",
    type=str,
    choices=["cpu", "cuda", "mps", "xpu", "npu"],
    default="cuda",
    help="The device type",
)
parser.add_argument(
    "--gpus",
    type=str,
    default="0",
    help="A single GPU like 1 or multiple GPUs like 0,2",
)
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument(
    "--max-gpu-memory",
    type=str,
    help="The maximum memory per gpu. Use a string like '13Gib'",
)
parser.add_argument("--load-8bit", action="store_true", help="Use 8-bit quantization")
parser.add_argument(
    "--cpu-offloading",
    action="store_true",
    help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU",
)
parser.add_argument(
    "--gptq-ckpt",
    type=str,
    default=None,
    help="Load quantized model. The path to the local GPTQ checkpoint.",
)
parser.add_argument(
    "--gptq-wbits",
    type=int,
    default=16,
    choices=[2, 3, 4, 8, 16],
    help="#bits to use for quantization",
)
parser.add_argument(
    "--gptq-groupsize",
    type=int,
    default=-1,
    help="Groupsize to use for quantization; default uses full row.",
)
parser.add_argument(
    "--gptq-act-order",
    action="store_true",
    help="Whether to apply the activation order GPTQ heuristic",
)
parser.add_argument(
    "--model-names",
    type=lambda s: s.split(","),
    help="Optional display comma separated names",
)
parser.add_argument(
    "--limit-worker-concurrency",
    type=int,
    default=5,
    help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")

worker_args = [
    "worker-host",
    "worker-port",
    "model-path",
    "revision",
    "device",
    "gpus",
    "num-gpus",
    "max-gpu-memory",
    "load-8bit",
    "cpu-offloading",
    "gptq-ckpt",
    "gptq-wbits",
    "gptq-groupsize",
    "gptq-act-order",
    "model-names",
    "limit-worker-concurrency",
    "stream-interval",
    "no-register",
    "controller-address",
]
# -----------------openai server---------------------------

parser.add_argument("--server-host", type=str, default="localhost", help="host name")
parser.add_argument("--server-port", type=int, default=8001, help="port number")
parser.add_argument(
    "--allow-credentials", action="store_true", help="allow credentials"
)
# parser.add_argument(
#     "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
# )
# parser.add_argument(
#     "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
# )
# parser.add_argument(
#     "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
# )
parser.add_argument(
    "--api-keys",
    type=lambda s: s.split(","),
    help="Optional list of comma separated API keys",
)
server_args = [
    "server-host",
    "server-port",
    "allow-credentials",
    "api-keys",
    "controller-address",
]

args = parser.parse_args()

args = argparse.Namespace(
    **vars(args),
    **{"controller-address": f"http://{args.controller_host}:{args.controller_port}"},
)

if args.gpus:
    if len(args.gpus.split(",")) < args.num_gpus:
        raise ValueError(
            f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
        )
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus

# 0,controller, model_worker, openai_api_server
# 1, cmd options
# 2,LOGDIR
# 3, log file name
base_launch_sh = "nohup python3 -m fastchat.serve.{0} {1} >{2}/{3}.log 2>&1 &"

# 0 LOGDIR
#! 1 log file name
# 2 controller, worker, openai_api_server
base_check_sh = """while [ `grep -c "Uvicorn running on" {0}/{1}.log` -eq '0' ];do
                        sleep 1s;
                        echo "wait {2} running"
                done
                echo '{2} running' """


def string_args(args, args_list):
    args_str = ""
    for key, value in args._get_kwargs():
        key = key.replace("_", "-")
        if key not in args_list:
            continue

        key = key.split("-")[-1] if re.search("port|host", key) else key
        if not value:
            pass
        # 1==True ->  True
        elif isinstance(value, bool) and value == True:
            args_str += f" --{key} "
        elif (
            isinstance(value, list)
            or isinstance(value, tuple)
            or isinstance(value, set)
        ):
            value = " ".join(value)
            args_str += f" --{key} {value} "
        else:
            args_str += f" --{key} {value} "

    return args_str


def launch_worker(item):
    log_name = (
        item.split("/")[-1]
        .split("\\")[-1]
        .replace("-", "_")
        .replace("@", "_")
        .replace(".", "_")
    )

    args.model_path, args.worker_host, args.worker_port = item.split("@")
    print("*" * 80)
    worker_str_args = string_args(args, worker_args)
    print(worker_str_args)
    worker_sh = base_launch_sh.format(
        "model_worker", worker_str_args, LOGDIR, f"worker_{log_name}"
    )
    worker_check_sh = base_check_sh.format(LOGDIR, f"worker_{log_name}", "model_worker")
    subprocess.run(worker_sh, shell=True, check=True)
    subprocess.run(worker_check_sh, shell=True, check=True)


def launch_all():
    controller_str_args = string_args(args, controller_args)
    controller_sh = base_launch_sh.format(
        "controller", controller_str_args, LOGDIR, "controller"
    )
    controller_check_sh = base_check_sh.format(LOGDIR, "controller", "controller")
    subprocess.run(controller_sh, shell=True, check=True)
    subprocess.run(controller_check_sh, shell=True, check=True)

    if isinstance(args.model_path_address, str):
        launch_worker(args.model_path_address)
    else:
        for idx, item in enumerate(args.model_path_address):
            print(f"loading {idx}th model:{item}")
            launch_worker(item)

    server_str_args = string_args(args, server_args)
    server_sh = base_launch_sh.format(
        "openai_api_server", server_str_args, LOGDIR, "openai_api_server"
    )
    server_check_sh = base_check_sh.format(
        LOGDIR, "openai_api_server", "openai_api_server"
    )
    subprocess.run(server_sh, shell=True, check=True)
    subprocess.run(server_check_sh, shell=True, check=True)


if __name__ == "__main__":
    launch_all()