File size: 28,299 Bytes
7eed258
 
f721373
7eed258
905f549
f721373
 
7eed258
 
905f549
f721373
 
7eed258
f721373
 
 
 
 
 
 
 
7eed258
 
905f549
f721373
 
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59705bf
 
 
 
 
 
 
 
 
 
 
 
7eed258
 
 
 
 
 
 
 
 
905f549
 
 
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
 
7eed258
 
 
 
 
 
 
 
 
 
 
905f549
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
 
 
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
 
 
 
 
 
 
 
 
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
7eed258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
905f549
 
 
 
 
 
 
 
 
 
 
 
 
f721373
905f549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f721373
905f549
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import ast
import glob
from itertools import islice
from functools import partial
from typing import Optional, Type

import gradio as gr
import nltk
import pandas as pd
from datatrove.data import Document
from datatrove.executor.local import LocalPipelineExecutor
from datatrove.pipeline.extractors import Trafilatura
from datatrove.pipeline.filters.base_filter import BaseFilter
from datatrove.pipeline.filters import (
    C4QualityFilter,
    FineWebQualityFilter,
    GopherQualityFilter,
    GopherRepetitionFilter,
    LanguageFilter,
    URLFilter,
)
from datatrove.pipeline.formatters import PIIFormatter
from datatrove.pipeline.readers import JsonlReader, WarcReader
from datatrove.utils.typeshelper import Languages


nltk.download('punkt_tab')
DUMP_TO_PROCESS = "CC-MAIN-2023-50"
default_output_docs_2k = pd.read_json(f"output_all-2k/base_processing/output/{DUMP_TO_PROCESS}/00000.jsonl.gz", compression="gzip", lines=True).to_dict(orient="records")
default_output_docs_200 = pd.read_json(f"output_all-200/base_processing/output/{DUMP_TO_PROCESS}/00000.jsonl.gz", compression="gzip", lines=True).to_dict(orient="records")

make_gallery_image_buttons_js = """
function load() {
    class ClassWatcher {

        constructor(targetNode, classToWatch, classAddedCallback, arg) {
            this.targetNode = targetNode
            this.classToWatch = classToWatch
            this.classAddedCallback = classAddedCallback
            this.arg = arg
            this.observer = null
            this.lastClassState = targetNode.classList.contains(this.classToWatch)

            this.init()
        }

        init() {
            this.observer = new MutationObserver(this.mutationCallback)
            this.observe()
        }

        observe() {
            this.observer.observe(this.targetNode, { attributes: true })
        }

        disconnect() {
            this.observer.disconnect()
        }

        mutationCallback = mutationsList => {
            for (let mutation of mutationsList) {
                if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
                    let currentClassState = mutation.target.classList.contains(this.classToWatch)
                    if(this.lastClassState !== currentClassState) {
                        this.lastClassState = currentClassState
                        if(currentClassState) {
                            this.classAddedCallback(this.arg)
                        }
                    }
                }
            }
        }
    }
    let buttons = document.getElementsByClassName("block-button");
    function clickButton(i) {
        buttons[i].click();
    }
    Array.from(document.getElementById("pipeline-gallery").getElementsByClassName("thumbnail-item")).map(
        (b, i) => new ClassWatcher(b, 'selected', clickButton, i)
    )
}
"""
css = """
tr:has(> td div span span div.diffInsertion) {
    background: darkgreen;
}
tr:has(> td div span span div.diffDeletion) {
    background: darkred;
}
tr td {
    border-top: 1px solid black;
}
.grid-container {
    gap: 0;
    grid-template-rows: auto;
    grid-auto-rows: auto;
}
.thumbnail-item {
    aspect-ratio: auto;
    height: min-content;
}
.grid-wrap {
    min-height: 0;
}
"""


blocks = sorted(glob.glob("images/*.png"))


def prepare_as_list_or_none(text: str) -> Optional[list[str]]:
    return ([x.strip() for x in text.split(",") if x.strip()] or None) if text else None

def non_empty_list_or_none(input_list: list[str]) -> Optional[list[str]]:
    return input_list or None

def build_code_snippet(steps, params=None):
    # TODO
    return (
        "```python\n"
        "TODO\n"
        "```"
    )


with gr.Blocks(css=css, js=make_gallery_image_buttons_js) as demo:
    state = gr.State({"selected_block": 0})
    gr.Markdown("# Common Crawl Pipeline Creator")
    gallery = gr.Gallery(
        blocks,
        columns=4,
        rows=2,
        label="Select step to edit",
        object_fit="scale-down",
        show_share_button=False,
        show_download_button=False,
        show_fullscreen_button=False,
        elem_id="pipeline-gallery",
        allow_preview=False,
    )
    gallery_image_buttons = [gr.Button(visible=False, elem_classes="block-button") for _ in blocks]  # hack to simulate each image galery as a button, see `make_gallery_image_buttons_js``
    blocks_uis = []
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 1. URL Filtering \n\nPerforms filtering based on samples urls.")
        with gr.Group():
            url_filtering_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                use_integrated_lists_checkbox = gr.Checkbox(True, label="use_integrated_lists", info="use the datatrove integrated lists of banned urls and words")
                with gr.Row():
                    with gr.Column():
                        extra_domain_textbox = gr.Textbox("", label="extra_domains", info="remove if the domain is present in `extra_domains`")
                        extra_domain_textbox.prepare_parameter = prepare_as_list_or_none
                        extra_urls_textbox = gr.Textbox("", label="extra_urls", info="remove if the full url is present on `extra_urls`")
                        extra_urls_textbox.prepare_parameter = prepare_as_list_or_none
                    with gr.Column():
                        banned_words_textbox = gr.Textbox("", label="banned_words", info="remove if any word from `banned_words` is in the url")
                        banned_words_textbox.prepare_parameter = prepare_as_list_or_none
                        banned_subwords_textbox = gr.Textbox("", label="banned_subwords", info="remove if any word from `banned_subwords` is a substring of the url")
                        banned_subwords_textbox.prepare_parameter = prepare_as_list_or_none
                    with gr.Column():
                        soft_banned_words_textbox = gr.Textbox("", label="soft_banned_words", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url")
                        soft_banned_words_textbox.prepare_parameter = prepare_as_list_or_none
                        soft_word_threshold_slider = gr.Slider(0, 5, value=2, step=1, label="soft_word_threshold", info="remove if there are at least `soft_word_threshold` words from `soft_banned_words` in the url")
            url_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=url_filtering_checkbox, outputs=acc)
        url_filtering_parameters_components = [use_integrated_lists_checkbox, extra_domain_textbox, extra_urls_textbox, banned_words_textbox, banned_subwords_textbox, soft_banned_words_textbox, soft_word_threshold_slider]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 2. Text Extraction \n\nUses the [Trafilatura](https://trafilatura.readthedocs.io) extractor.")
        with gr.Group():
            text_extraction_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                with gr.Row():
                    favour_precision_checkbox = gr.Checkbox(True, label="favour_precision", info="prefer less text but correct extraction")
                    timeout_slider = gr.Slider(0.05, 0.5, value=0.1, step=0.05, label="timeout", info="the timeout for extraction, per document, in seconds")
                    deduplicate_checkbox = gr.Checkbox(True, label="deduplicate", info="trafilatura's deduplicate option")
            text_extraction_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=text_extraction_checkbox, outputs=acc)
        text_extraction_parameters_components = [favour_precision_checkbox, timeout_slider, deduplicate_checkbox]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 3. Language Filtering \n\nUses the [fastext](https://fasttext.cc/docs/en/language-identification.html) language identification models.")
        with gr.Group():
            language_filtering_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                with gr.Row():
                    languages_textbox = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), multiselect=True, label="languages", info="list of languages to keep. empty for all")
                    languages_textbox.prepare_parameter = non_empty_list_or_none
                    language_threshold_slider = gr.Slider(0, 1, value=0.65, step=0.05, label="language_threshold", info="minimum score to accept a document")
            language_filtering_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=language_filtering_checkbox, outputs=acc)
        language_filtering_parameters_components = [languages_textbox, language_threshold_slider]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 4. Gopher Filtering (repetitions) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text repetition filters.")
        with gr.Group():
            gopher_filtering_repetitions_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                with gr.Group():
                    with gr.Row():
                        language_dropdown1 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
                        top_n_grams_textbox = gr.Textbox("(2, 0.2), (3, 0.18), (4, 0.16)", label="top_n_grams")
                        top_n_grams_textbox.prepare_parameter = ast.literal_eval
                        dup_n_grams_textbox = gr.Textbox("(5, 0.15), (6, 0.14), (7, 0.13), (8, 0.12), (9, 0.11), (10, 0.10)", label="dup_n_grams")
                        dup_n_grams_textbox.prepare_parameter = ast.literal_eval
                    with gr.Row():
                        dup_line_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_line_frac")
                        dup_para_frac_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="dup_para_frac")
                        dup_line_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_line_char_frac")
                        dup_para_char_frac_slider = gr.Slider(0, 1, value=0.2, step=0.05, label="dup_para_char_frac")
            gopher_filtering_repetitions_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_repetitions_checkbox, outputs=acc)
        gopher_filtering_repetitions_parameters_components = [language_dropdown1, top_n_grams_textbox, dup_n_grams_textbox, dup_line_frac_slider, dup_para_frac_slider, dup_line_char_frac_slider, dup_para_char_frac_slider]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 8. PII Removal \n\nReplaces email addresses and ip addresses in the document text.")
        with gr.Group():
            pii_removal_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                    with gr.Row():
                        remove_emails_checkbox = gr.Checkbox(True, label="remove_emails", info="Replace email addresses")
                        remove_ips_checkbox = gr.Checkbox(True, label="remove_ips", info="Replace IP addresses")
                        only_remove_public_ips_checkbox = gr.Checkbox(True, label="only_remove_public_ips", info="by default we only replace public (and thus PII) IPs")
                    with gr.Row():
                        email_replacement_textbox = gr.Textbox("email@example.com, firstname.lastname@example.org", label="email_replacement", info="strings to use as replacement. They will be used in a circular way")
                        email_replacement_textbox.prepare_parameter = prepare_as_list_or_none
                        ip_replacement_textbox = gr.Textbox("22.214.171.124, 126.96.36.199, 188.8.131.52, 184.108.40.206, 220.127.116.11, 18.104.22.168", label="ip_replacement", info="same as email_replacement but for IP addresses")
                        ip_replacement_textbox.prepare_parameter = prepare_as_list_or_none
            pii_removal_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=pii_removal_checkbox, outputs=acc)
        pii_removal_parameters_components = [remove_emails_checkbox, remove_ips_checkbox, only_remove_public_ips_checkbox, email_replacement_textbox, ip_replacement_textbox]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 7. Custom Filters \n\nUses the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) custom text filters.")
        with gr.Group():
            custom_filters_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                with gr.Row():
                    line_punct_thr_slider = gr.Slider(0, 1, value=0.12, step=0.01, label="line_punct_thr")
                    line_punct_exclude_zero = gr.Checkbox(False, label="line_punct_exclude_zero")
                    short_line_thr_slider = gr.Slider(0, 1, value=0.67, step=0.01, label="short_line_thr")
                    short_line_length_slider = gr.Slider(0, 100, value=30, step=1, label="short_line_length")
                    char_duplicates_ratio_slider = gr.Slider(0, 1, value=0.01, step=0.01, label="char_duplicates_ratio")
                    new_line_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="new_line_ratio")
            custom_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=custom_filters_checkbox, outputs=acc)
        custom_filters_parameters_components = [line_punct_thr_slider, line_punct_exclude_zero, short_line_thr_slider, short_line_length_slider, char_duplicates_ratio_slider, new_line_ratio_slider]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 6. C4 Filters\n\nUses the [C4](https://huggingface.co/datasets/allenai/c4) text size and content filters.")
        with gr.Group():
            c4_filters_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion(" Parameters", open=True) as acc:
                with gr.Group():
                    with gr.Row():
                        split_paragraph_checkbox = gr.Checkbox(True, label="split_paragraph", info="disable to apply the filters to each sentence instead of to each line")
                    with gr.Row():
                        language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
                        min_num_sentences_slider = gr.Slider(0, 10, value=5, step=1, label="min_num_sentences", info="remove documents that do not have at least this number of sentences (after line filtering)")
                        min_words_per_line_slider = gr.Slider(0, 10, value=3, step=1, label="min_words_per_line", info="drop lines without this min number of words")
                        max_word_length_slider = gr.Slider(0, 2000, value=1000, step=10, label="max_word_length", info=" drop lines where at least one word has more than this number of characters")
                    with gr.Row():
                        remove_citations_checkbox = gr.Checkbox(True, label="remove_citations", info="remove wikipedia style citations from the text")
                        filter_no_terminal_punct_checkbox = gr.Checkbox(True, label="filter_no_terminal_punct", info="remove lines without terminal punctuation marks")
                        filter_lorem_ipsum_checkbox = gr.Checkbox(True, label="filter_lorem_ipsum", info="drop documents that contain 'lorem ipsum'")
                        filter_javascript_checkbox = gr.Checkbox(True, label="filter_javascript", info="drop lines mentioning 'javascript'")
                        filter_curly_bracket = gr.Checkbox(True, label="filter_curly_bracket", info="drop documents containing {")
                        filter_policy = gr.Checkbox(True, label="filter_policy", info="drop lines containing any of the policy phrases (e.g. 'terms of use', 'use cookies')")
            c4_filters_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=c4_filters_checkbox, outputs=acc)
        c4_filters_parameters_components = [split_paragraph_checkbox, language_dropdown2, min_num_sentences_slider, min_words_per_line_slider, max_word_length_slider, remove_citations_checkbox, filter_no_terminal_punct_checkbox, filter_lorem_ipsum_checkbox, filter_javascript_checkbox, filter_curly_bracket, filter_policy]
    with gr.Column(visible=False) as col:
        blocks_uis.append(col)
        gr.Markdown("## 5. Gopher Filtering (quality) \n\nUses the [Gopher](https://huggingface.co/papers/2112.11446) text quality filters.")
        with gr.Group():
            gopher_filtering_quality_checkbox = gr.Checkbox(True, label="Enable")
            with gr.Accordion("Parameters", open=True) as acc:
                with gr.Group():
                    with gr.Row():
                        language_dropdown2 = gr.Dropdown(sorted(v for k, v in vars(Languages).items() if not k.startswith("__")), value=Languages.english, label="language", info="tokenizer language")
                        min_doc_words_slider = gr.Slider(0, 1000, value=50, step=10, label="min_doc_words")
                        max_doc_words_slider = gr.Slider(0, 200_000, value=100_000, step=10_000, label="max_doc_words")
                    with gr.Row():
                        min_avg_word_length_slider = gr.Slider(0, 20, value=3, step=1, label="min_avg_word_length")
                        max_avg_word_length_slider = gr.Slider(0, 20, value=10, step=1, label="max_avg_word_length")
                    with gr.Row():
                        max_symbol_word_ratio_slider = gr.Slider(0, 1, value=0.1, step=0.05, label="max_symbol_word_ratio")
                        max_bullet_lines_ratio_slider = gr.Slider(0, 1, value=0.9, step=0.05, label="max_bullet_lines_ratio")
                        max_ellipsis_lines_ratio_slider = gr.Slider(0, 1, value=0.3, step=0.05, label="max_ellipsis_lines_ratio")
                        max_non_alpha_words_ratio_slider = gr.Slider(0, 1, value=0.8, step=0.05, label="max_non_alpha_words_ratio")
                    with gr.Row():
                        min_stop_words_slider = gr.Slider(0, 10, value=2, step=1, label="min_stop_words")
                        stop_words_textbox = gr.Textbox("the, be, to, of, and, that, have, with", label="stop_words")
                        stop_words_textbox.prepare_parameter = prepare_as_list_or_none
            gopher_filtering_quality_checkbox.change(lambda visible: gr.Accordion(visible=visible), inputs=gopher_filtering_quality_checkbox, outputs=acc)
        gopher_filtering_quality_parameters_components = [language_dropdown2, min_doc_words_slider, max_doc_words_slider, min_avg_word_length_slider, max_avg_word_length_slider, max_symbol_word_ratio_slider, max_bullet_lines_ratio_slider, max_ellipsis_lines_ratio_slider, max_non_alpha_words_ratio_slider, min_stop_words_slider, stop_words_textbox]

    with gr.Row():
        view_pipeline_results_button = gr.Button("Run Pipeline & Stream Results", variant="primary", scale=4)
        stop_button = gr.Button("Stop")

    steps = [
        URLFilter,
        Trafilatura,
        LanguageFilter,
        GopherRepetitionFilter,
        GopherQualityFilter,
        C4QualityFilter,
        FineWebQualityFilter,
        PIIFormatter
    ]
    steps_parameters_components = [
        url_filtering_parameters_components,
        text_extraction_parameters_components,
        language_filtering_parameters_components,
        gopher_filtering_repetitions_parameters_components,
        gopher_filtering_quality_parameters_components,
        c4_filters_parameters_components,
        custom_filters_parameters_components,
        pii_removal_parameters_components
    ]

    with gr.Tab("Output") as output_tab:
        output_dataframe = gr.DataFrame(datatype="markdown")
    with gr.Tab("Excluded") as excluded_tab:
        excluded_dataframes: dict[Type, gr.DataFrame] = {}
        excluded_tabs: dict[Type, gr.Tab] = {}
        for step in steps:
            if issubclass(step, BaseFilter) and step is not URLFilter:
                with gr.Tab(step.__name__) as t:
                    excluded_dataframes[step] = gr.DataFrame(datatype="markdown")
                    excluded_tabs[step] = t
    with gr.Tab("Python code") as code_tab:
        python_code_markdown = gr.Markdown(build_code_snippet(steps))


    gr.Markdown("_powered by [datatrove](https://github.com/huggingface/datatrove)_")

    def show_block_ui(i):
        return {**{block_ui: gr.Column(visible=(j == i)) for j, block_ui in enumerate(blocks_uis)}, state: {"selected_block": i}}

    for i, button in enumerate(gallery_image_buttons):
        button.click(partial(show_block_ui, i), outputs=blocks_uis + [state])


    inputs = [
        url_filtering_checkbox,
        text_extraction_checkbox,
        language_filtering_checkbox,
        gopher_filtering_repetitions_checkbox,
        gopher_filtering_quality_checkbox,
        c4_filters_checkbox,
        custom_filters_checkbox,
        pii_removal_checkbox
    ] + sum(steps_parameters_components, [])

    @view_pipeline_results_button.click(inputs=inputs, outputs=[output_tab, output_dataframe, excluded_tab] + list(excluded_dataframes.values()) + list(excluded_tabs.values()))
    def view_pipeline_results(*args):
        enable_steps, steps_parameters = args[:len(steps)], args[len(steps):]
        steps_parameters_iter = iter(steps_parameters)
        steps_parameters = [
            {
                parameters_component.label: parameters_component.prepare_parameter(parameter) if hasattr(parameters_component, "prepare_parameter") else parameter
                for parameters_component, parameter in zip(step_parameters_components, steps_parameters_iter)
            }
            for step_parameters_components in steps_parameters_components
        ]
        default_steps_parameters = [
            {
                parameters_component.label: parameters_component.prepare_parameter(parameters_component.value) if hasattr(parameters_component, "prepare_parameter") else parameters_component.value
                for parameters_component in step_parameters_components
            }
            for step_parameters_components in steps_parameters_components
        ]

        class ExclusionWriter:

            def __init__(self) -> None:
                self.docs: list[Document] = []
            
            def __enter__(self):
                return self

            def __exit__(self, exc_type, exc_val, exc_tb):
                return
            
            def write(self, doc, rank):
                self.docs.append(doc)

        steps_to_run = [
            step(**step_parameters, **({"exclusion_writer": ExclusionWriter()} if step in excluded_dataframes else {}))
            for step, step_parameters, enable_step in zip(steps, steps_parameters, enable_steps)
            if enable_step
        ]
        output_docs: list[Document] = []
        num_warc_samples = 0

        def increment_num_warc_samples(data, rank, world_size, num_warc_samples_per_doc=1):
            nonlocal num_warc_samples
            for x in data:
                num_warc_samples += num_warc_samples_per_doc
                yield x

        if steps_parameters[:2] == default_steps_parameters[:2] and all(enable_steps[:2]):
            
            pipeline_executor = LocalPipelineExecutor(
                pipeline=[
                    JsonlReader(data_folder=f"output_text_extraction-2k/base_processing/output/{DUMP_TO_PROCESS}", glob_pattern="*.jsonl.gz"),
                    partial(increment_num_warc_samples, num_warc_samples_per_doc=2000 / 1687)
                ] + steps_to_run[2:] + [
                    lambda data, rank, world_size: map(output_docs.append, data)
                ],
                logging_dir="logs",
                skip_completed=False
            )
        else:
            pipeline_executor = LocalPipelineExecutor(
                pipeline=[
                    WarcReader(data_folder="data", glob_pattern="*.warc.gz"),
                    lambda data, rank, world_size: islice(data, num_warc_samples),
                ] + steps_to_run + [
                    lambda data, rank, world_size: map(output_docs.append, data)
                ],
                logging_dir="logs",
                skip_completed=False
            )
        from threading import Thread
        thread = Thread(target=pipeline_executor.run)
        thread.start()
        while thread.is_alive():
            thread.join(timeout=1)
            
            if num_warc_samples:
                yield {
                    output_tab: gr.Tab(f"Output (~{len(output_docs)/num_warc_samples*100:.03f}% of data)"),
                    excluded_tab: gr.Tab(f"Excluded (~{100 - len(output_docs)/num_warc_samples*100:.03f}% of data)"),
                    output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}),
                    **{
                        excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]})
                        for step_to_run in pipeline_executor.pipeline
                        if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
                    },
                    **{
                        excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} (~{len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}% of data)")
                        for step_to_run in pipeline_executor.pipeline
                        if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
                    },
                }
            else:
                yield {
                    output_tab: gr.Tab("Output (loading...)"),
                    excluded_tab: gr.Tab("Excluded (loading...)"),
                    **{
                        excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]})
                        for step_to_run in pipeline_executor.pipeline
                        if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
                    },
                    **{
                        excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} (~{len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}% of data)")
                        for step_to_run in pipeline_executor.pipeline
                        if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
                    },
                }
        yield {
            output_tab: gr.Tab(f"Output (~{len(output_docs)/num_warc_samples*100:.03f}% of data)"),
            excluded_tab: gr.Tab(f"Excluded (~{100 - len(output_docs)/num_warc_samples*100:.03f}% of data)"),
            output_dataframe: pd.DataFrame({"text": [doc.text for doc in output_docs]}),
            **{
                excluded_dataframes[type(step_to_run)]: pd.DataFrame({"text": [doc.text for doc in step_to_run.exclusion_writer.docs]})
                for step_to_run in pipeline_executor.pipeline
                if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
            },
            **{
                excluded_tabs[type(step_to_run)]: gr.Tab(f"{type(step_to_run).__name__} (~{len(step_to_run.exclusion_writer.docs)/num_warc_samples*100:.03f}% of data)")
                for step_to_run in pipeline_executor.pipeline
                if isinstance(step_to_run, BaseFilter) and type(step_to_run) in excluded_dataframes
            },
        }

if __name__ == "__main__":
    demo.launch()