File size: 184,172 Bytes
5fd26bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
<?xml version="1.0" encoding="UTF-8"?>
<TEI xml:space="preserve" xmlns="http://www.tei-c.org/ns/1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.tei-c.org/ns/1.0 https://raw.githubusercontent.com/kermitt2/grobid/master/grobid-home/schemas/xsd/Grobid.xsd" xmlns:xlink="http://www.w3.org/1999/xlink">
	<teiHeader xml:lang="en">
		<fileDesc>
			<titleStmt>
				<title level="a" type="main">PaperQA: Retrieval-Augmented Generative Agent for Scientific Research</title>
			</titleStmt>
			<publicationStmt>
				<publisher/>
				<availability status="unknown"><licence/></availability>
				<date type="published" when="2023-12-14">14 Dec 2023</date>
			</publicationStmt>
			<sourceDesc>
				<biblStruct>
					<analytic>
						<author>
							<persName coords="1,139.37,184.20,57.96,10.75"><forename type="first">Jakub</forename><surname>Lála</surname></persName>
							<affiliation key="aff0">
								<orgName type="department">Future House Francis Crick Institute</orgName>
							</affiliation>
						</author>
						<author>
							<persName coords="1,245.87,184.20,108.61,10.75"><forename type="first">Odhran</forename><surname>O'donoghue</surname></persName>
							<affiliation key="aff1">
								<orgName type="department">Align to Innovate Francis Crick Institute</orgName>
								<orgName type="institution">University of Oxford</orgName>
							</affiliation>
						</author>
						<author>
							<persName coords="1,378.55,184.20,118.57,10.75"><forename type="first">Aleksandar</forename><surname>Shtedritski</surname></persName>
							<affiliation key="aff2">
								<orgName type="department">Align to Innovate Francis Crick Institute</orgName>
								<orgName type="institution">University of Oxford</orgName>
							</affiliation>
						</author>
						<author>
							<persName coords="1,212.04,259.91,46.16,10.75"><forename type="first">Sam</forename><surname>Cox</surname></persName>
							<affiliation key="aff3">
								<orgName type="department">Future House</orgName>
								<orgName type="institution">University of Rochester</orgName>
							</affiliation>
						</author>
						<author>
							<persName coords="1,327.15,259.91,106.28,10.75"><forename type="first">Samuel</forename><forename type="middle">G</forename><surname>Rodriques</surname></persName>
							<affiliation key="aff4">
								<orgName type="department">Future House Francis Crick Institute</orgName>
							</affiliation>
						</author>
						<author role="corresp">
							<persName coords="1,262.61,321.68,86.78,10.75"><forename type="first">Andrew</forename><forename type="middle">D</forename><surname>White</surname></persName>
							<email>andrew@futurehouse.org</email>
							<affiliation key="aff5">
								<orgName type="department">Future House</orgName>
								<orgName type="institution">University of Rochester</orgName>
							</affiliation>
						</author>
						<title level="a" type="main">PaperQA: Retrieval-Augmented Generative Agent for Scientific Research</title>
					</analytic>
					<monogr>
						<imprint>
							<date type="published" when="2023-12-14">14 Dec 2023</date>
						</imprint>
					</monogr>
					<idno type="MD5">F19D27C5A579FCA6A8D31FBD5E8086B3</idno>
					<idno type="arXiv">arXiv:2312.07559v2[cs.CL]</idno>
				</biblStruct>
			</sourceDesc>
		</fileDesc>
		<encodingDesc>
			<appInfo>
				<application version="0.8.1-SNAPSHOT" ident="GROBID" when="2023-12-18T12:01+0000">
					<desc>GROBID - A machine learning software for extracting information from scholarly documents</desc>
					<ref target="https://github.com/kermitt2/grobid"/>
				</application>
			</appInfo>
		</encodingDesc>
		<profileDesc>
			<abstract>
<div xmlns="http://www.tei-c.org/ns/1.0"><p coords="1,143.87,436.66,324.27,8.64;1,143.87,447.62,324.27,8.64;1,143.87,458.58,324.27,8.64;1,143.87,469.54,324.27,8.64;1,143.87,480.50,324.27,8.64;1,143.87,491.46,324.27,8.64;1,143.87,502.42,324.27,8.64;1,143.87,513.38,324.27,8.64;1,143.87,524.34,324.27,8.64;1,143.87,535.29,324.27,8.64;1,143.87,546.25,324.27,8.64;1,143.87,557.21,324.27,8.64;1,143.87,568.17,324.27,8.64;1,143.87,579.13,324.27,8.64;1,143.87,590.09,276.37,8.64">Large Language Models (LLMs) generalize well across language tasks, but suffer from hallucinations and uninterpretability, making it difficult to assess their accuracy without ground-truth. Retrieval-Augmented Generation (RAG) models have been proposed to reduce hallucinations and provide provenance for how an answer was generated. Applying such models to the scientific literature may enable large-scale, systematic processing of scientific knowledge. We present PaperQA, a RAG agent for answering questions over the scientific literature. PaperQA is an agent that performs information retrieval across full-text scientific articles, assesses the relevance of sources and passages, and uses RAG to provide answers. Viewing this agent as a question-answering model, we find it exceeds performance of existing LLMs and LLM agents on current science QA benchmarks. To push the field closer to how humans perform research on scientific literature, we also introduce LitQA, a more complex benchmark that requires retrieval and synthesis of information from full-text scientific papers across the literature. Finally, we demonstrate PaperQA's matches expert human researchers on LitQA.</p></div>
			</abstract>
		</profileDesc>
	</teiHeader>
	<facsimile>
		<surface n="1" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="2" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="3" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="4" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="5" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="6" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="7" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="8" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="9" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="10" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="11" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="12" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="13" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="14" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="15" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="16" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="17" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="18" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="19" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
		<surface n="20" ulx="0.0" uly="0.0" lrx="612.0" lry="792.0"/>
	</facsimile>
	<text xml:lang="en">
		<body>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="1" coords="1,108.30,630.02,97.69,10.37">INTRODUCTION</head><p coords="1,108.00,657.62,396.00,8.64;1,108.00,668.58,88.81,8.64;1,209.69,668.58,149.41,8.64;1,371.98,668.58,132.02,8.64;1,108.00,679.54,396.00,8.64;1,140.36,690.50,363.65,8.64;1,108.00,701.46,250.13,8.64;1,381.38,701.46,122.62,8.64;1,161.51,712.42,105.46,8.64;1,299.32,712.42,204.68,8.64;1,108.00,723.38,127.08,8.64;2,108.00,85.34,396.00,8.64;2,108.00,96.30,243.33,8.64;2,386.51,96.30,117.50,8.64;2,108.00,107.26,396.00,8.64;2,108.00,118.22,319.79,8.64;2,460.63,118.22,43.37,8.64;2,108.00,129.17,396.00,8.64;2,108.00,140.13,277.44,8.64;2,403.27,140.13,100.73,8.64;2,108.00,151.09,396.00,8.64;2,108.00,162.05,312.25,8.64">The rate of papers published yearly grows at an exponential rate, with over 5 million academic articles published in 2022 <ref type="bibr" coords="1,199.11,668.58,10.58,8.64" target="#b0">[1]</ref>, and over 200 million articles in total <ref type="bibr" coords="1,361.40,668.58,10.58,8.64" target="#b1">[2]</ref>. The difficulty of navigating this extensive literature means significant scientific findings have gone unnoticed for extended periods <ref type="bibr" coords="1,108.00,690.50,10.79,8.64" target="#b2">[3,</ref><ref type="bibr" coords="1,122.24,690.50,7.47,8.64" target="#b3">4,</ref><ref type="bibr" coords="1,133.17,690.50,7.19,8.64" target="#b4">5]</ref>. Work in the last 10 years has sought to make the space of literature more manageable for scientists, with the introduction of keyword search systems <ref type="bibr" coords="1,360.76,701.46,10.79,8.64" target="#b5">[6,</ref><ref type="bibr" coords="1,374.19,701.46,7.19,8.64" target="#b6">7]</ref>, vector similarity embeddings <ref type="bibr" coords="1,108.00,712.42,10.79,8.64" target="#b7">[8,</ref><ref type="bibr" coords="1,121.17,712.42,7.47,8.64" target="#b8">9,</ref><ref type="bibr" coords="1,131.01,712.42,12.45,8.64" target="#b9">10,</ref><ref type="bibr" coords="1,145.85,712.42,13.28,8.64" target="#b10">11]</ref> and recommender systems <ref type="bibr" coords="1,269.35,712.42,15.77,8.64" target="#b11">[12,</ref><ref type="bibr" coords="1,287.50,712.42,11.83,8.64" target="#b12">13]</ref>. The process of scientific discovery from literature is still, however, highly manual. The use of Large Language Models (LLMs) to answer scientific questions is increasingly seen in academia and research-heavy professions such as medicine <ref type="bibr" coords="2,355.11,96.30,15.77,8.64" target="#b13">[14,</ref><ref type="bibr" coords="2,374.68,96.30,11.83,8.64" target="#b14">15]</ref>. While LLMs can produce answers faster and encompass a broader, deeper scope than manual searching, there is a high risk of hallucination in responses, which can lead to potentially dangerous outcomes <ref type="bibr" coords="2,430.41,118.22,15.77,8.64" target="#b15">[16,</ref><ref type="bibr" coords="2,448.80,118.22,11.83,8.64" target="#b16">17]</ref>. Incorrect information can be more damaging than no information at all, as the time to verify veracity can take just as long as retrieving it from research papers in the first place <ref type="bibr" coords="2,388.00,140.13,15.27,8.64" target="#b17">[18]</ref>. Reliance on pre-trained LLMs also prevents the discovery of new information published after a training cutoff date. Given the rapidly moving pace of science, this can lead to misconceptions persisting.</p><p coords="2,108.00,178.99,373.61,8.64;2,500.19,178.99,3.82,8.64;2,108.00,189.95,396.00,8.64;2,108.00,200.91,396.00,8.64;2,108.00,211.86,302.92,8.64;2,443.43,211.86,60.57,8.64;2,108.00,222.82,396.00,8.64;2,108.00,233.78,155.78,8.64">Retrieval-Augmented Generation (RAG) models are a potential solution to these limitations <ref type="bibr" coords="2,484.92,178.99,15.27,8.64" target="#b18">[19]</ref>. RAG models retrieve text from a corpus, using methods such as vector embedding search or keyword search, and add the retrieved passage to the context window of the LLM. RAG usage can reduce hallucinations in conversations and improve LLM performance on QA tasks <ref type="bibr" coords="2,413.37,211.86,15.77,8.64" target="#b15">[16,</ref><ref type="bibr" coords="2,431.61,211.86,11.83,8.64" target="#b19">20]</ref>. Nevertheless, standard RAG models follow a fixed, linear flow, which can be restrictive for addressing the diverse range of questions scientists encounter.</p><p coords="2,108.00,250.72,396.00,8.64;2,108.00,261.68,396.00,8.64;2,108.00,272.64,396.00,8.64;2,108.00,283.60,396.00,8.64;2,108.00,294.55,396.00,8.64;2,108.00,305.51,63.62,8.64">In this work, we eliminate these limitations by breaking RAG into modular pieces, allowing an agent LLM to dynamically adjust and iteratively perform steps in response to the specific demands of each question, ensuring more precise and relevant answers. We call this PaperQA, an agent-based RAG system for scientific question answering. PaperQA has three fundamental components: finding papers relevant to the given question, gathering text from those papers, and generating an answer with references.</p><p coords="2,108.00,322.45,396.00,8.64;2,108.00,333.41,396.00,8.64;2,108.00,344.37,230.74,8.64;2,361.78,344.37,142.23,8.64;2,108.00,355.33,396.00,8.64;2,108.00,366.29,396.00,8.64;2,108.00,377.24,396.00,8.64;2,108.00,388.20,396.00,8.64;2,108.00,399.16,396.00,8.64;2,108.00,410.12,396.00,8.64;2,108.00,421.08,396.00,8.64;2,108.00,432.04,396.00,8.64;2,108.00,443.00,396.00,8.64;2,108.00,453.96,63.65,8.64">We evaluate PaperQA on several standard multiple-choice datasets for evaluating LLMs, which assess the model's ability to answer questions with existing knowledge, but do not test the agents' ability to retrieve information. We modified PubMedQA <ref type="bibr" coords="2,341.96,344.37,16.60,8.64" target="#b20">[21]</ref> to remove the provided context (so it is closed-book) and found PaperQA beats GPT-4 by 30 points (57.9% to 86.3%). PubMedQA is only built on abstracts though, and so we construct a more difficult dataset that requires synthesizing information from one or multiple full-text research papers. We thus introduce a new dataset, LitQA, composed from recent literature, in order to test PaperQA's ability to retrieve information outside of the underlying LLM's pre-training data. PaperQA outperforms all models tested and commercial tools, and is comparable to human experts on LitQA on performance and time, but is significantly cheaper in terms of costs. Furthermore, PaperQA is competitive to state-of-the-art commercial tools for scientific question answering. Finally, we find that PaperQA exhibits a better knowledge boundary than competing tools, answering questions incorrectly at a lower rate, and instead, answering that it is unsure.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="2" coords="2,108.30,481.91,108.80,10.37">RELATED WORKS</head><p coords="2,108.00,506.69,396.00,9.03;2,108.00,518.04,300.33,8.64;2,500.06,518.04,3.94,8.64;2,108.00,529.00,396.00,8.64;2,108.00,539.96,43.71,8.64;2,173.30,539.96,191.67,8.64;2,382.75,539.96,121.26,8.64;2,190.12,550.92,159.19,8.64;2,382.81,550.92,121.19,8.64;2,108.00,561.87,201.96,8.64">LLMs for Natural Sciences Large Language Models (LLMs) have seen a surge in popularity and accessibility, leading to impressive applications across various domains <ref type="bibr" coords="2,410.71,518.04,15.77,8.64" target="#b21">[22,</ref><ref type="bibr" coords="2,428.88,518.04,12.45,8.64" target="#b22">23,</ref><ref type="bibr" coords="2,443.71,518.04,12.45,8.64" target="#b23">24,</ref><ref type="bibr" coords="2,458.55,518.04,12.45,8.64" target="#b24">25,</ref><ref type="bibr" coords="2,473.39,518.04,12.45,8.64" target="#b25">26,</ref><ref type="bibr" coords="2,488.23,518.04,11.83,8.64" target="#b26">27]</ref>. LLMs have been used effectively for text-based scientific tasks, such as extracting chemical reaction procedures <ref type="bibr" coords="2,154.21,539.96,16.60,8.64" target="#b27">[28]</ref> and entity extraction from biological documents <ref type="bibr" coords="2,367.48,539.96,15.27,8.64" target="#b28">[29]</ref>. LLMs trained on biomedical <ref type="bibr" coords="2,108.00,550.92,15.77,8.64" target="#b29">[30,</ref><ref type="bibr" coords="2,126.91,550.92,12.45,8.64" target="#b30">31,</ref><ref type="bibr" coords="2,142.51,550.92,12.45,8.64" target="#b31">32,</ref><ref type="bibr" coords="2,158.10,550.92,12.45,8.64" target="#b32">33,</ref><ref type="bibr" coords="2,173.69,550.92,13.28,8.64" target="#b33">34]</ref> or more generalized scientific literature <ref type="bibr" coords="2,352.45,550.92,10.79,8.64" target="#b8">[9,</ref><ref type="bibr" coords="2,366.39,550.92,13.28,8.64" target="#b34">35]</ref> have demonstrated impressive performance on current scientific QA benchmarks.</p><p coords="2,108.00,578.81,396.00,8.64;2,108.00,589.77,63.61,8.64;2,194.78,589.77,113.64,8.64;2,326.99,589.77,177.02,8.64;2,108.00,600.73,186.43,8.64;2,317.73,600.73,96.92,8.64;2,448.96,600.73,55.04,8.64;2,108.00,611.69,242.48,8.64;2,383.84,611.69,120.17,8.64;2,108.00,622.65,301.35,8.64">State-of-the-art pre-trained LLMs exhibit proficiency in complex tasks such as searching for chemical compounds <ref type="bibr" coords="2,174.90,589.77,16.60,8.64" target="#b26">[27]</ref> and designing new catalysts <ref type="bibr" coords="2,311.72,589.77,15.27,8.64" target="#b35">[36]</ref>. Still, LLMs frequently fall short in many scientific domains due to outdated knowledge <ref type="bibr" coords="2,297.79,600.73,16.60,8.64" target="#b36">[37]</ref> and reasoning problems <ref type="bibr" coords="2,418.01,600.73,15.77,8.64" target="#b37">[38,</ref><ref type="bibr" coords="2,437.13,600.73,11.83,8.64" target="#b38">39]</ref>. Prompt engineering techniques can enhance LLMs' reasoning abilities <ref type="bibr" coords="2,353.36,611.69,15.77,8.64" target="#b39">[40,</ref><ref type="bibr" coords="2,372.01,611.69,11.83,8.64" target="#b40">41]</ref>, though some scientific tasks requiring real-time calculations and up-to-date information remain difficult.</p><p coords="2,108.00,646.27,396.00,9.03;2,108.00,657.62,28.78,8.64;2,154.55,657.62,349.45,8.64;2,108.00,668.40,276.44,8.82;2,415.93,668.58,88.07,8.64;2,108.00,679.54,396.00,8.64;2,108.00,690.50,396.00,8.64;2,108.00,701.46,194.82,8.64;2,336.47,701.46,167.53,8.64;2,153.62,712.42,350.38,8.64;2,108.00,723.38,246.25,8.64;3,277.71,233.80,226.29,8.64;3,108.00,244.76,396.00,8.64;3,108.00,255.72,396.00,8.64;3,108.00,266.67,396.00,8.64;3,108.00,277.63,396.00,8.64;3,108.00,288.59,396.00,8.64;3,108.00,299.55,214.44,8.64">Agents Another technique is to integrate external tools into LLMs, creating agent systems, such as MRKL <ref type="bibr" coords="2,139.28,657.62,15.27,8.64" target="#b41">[42]</ref>. These LLM-agent systems leverage the reasoning power of the base-LLM and the use of pre-defined external tools to act in order to complete a given prompt <ref type="bibr" coords="2,386.39,668.58,15.77,8.64" target="#b42">[43,</ref><ref type="bibr" coords="2,404.10,668.58,11.83,8.64" target="#b43">44]</ref>. In such a system, the agent iteratively decides on the best tools to use in order to address the given task, correcting previous behavior when necessary, until the task is complete. This setup can also integrate reasoning steps, as with the ReAct framework and its derivatives <ref type="bibr" coords="2,305.85,701.46,15.77,8.64" target="#b44">[45,</ref><ref type="bibr" coords="2,324.65,701.46,11.83,8.64" target="#b45">46]</ref>, or may incorporate multi-agent systems <ref type="bibr" coords="2,108.00,712.42,15.77,8.64" target="#b46">[47,</ref><ref type="bibr" coords="2,126.56,712.42,12.45,8.64" target="#b47">48,</ref><ref type="bibr" coords="2,141.79,712.42,11.83,8.64" target="#b48">49]</ref>. Our method extends previous work by integrating an agent-based RAG framework in order to correctly and dependably answer scientific questions. PaperQA is an agent that transforms a scientific question into an answer with cited sources. The agent utilizes three tools -search, gather evidence, and answer question. The tools enable it to find and parse relevant full-text research papers, identify specific sections in the paper that help answer the question, summarize those section with the context of the question (called evidence), and then generate an answer based on the evidence. It is an agent, so that the LLM orchestrating the tools can adjust the input to paper searches, gather evidence with different phrases, and assess if an answer is complete.</p><p coords="3,108.00,357.05,396.00,9.03;3,108.00,368.40,199.47,8.64;3,341.21,368.40,140.63,8.64;3,500.19,368.40,3.82,8.64;3,108.00,379.36,76.83,8.64;3,207.91,379.36,50.84,8.64;3,292.83,379.36,211.17,8.64;3,108.00,390.32,114.71,8.64;3,246.65,390.32,121.97,8.64;3,387.57,390.32,116.44,8.64;3,108.00,401.27,396.00,8.64;3,108.00,412.23,220.01,8.64">Evaluating LLM Scientists Assessing the scientific capabilities of LLMs often relies on QA benchmarks, such as general science benchmarks <ref type="bibr" coords="3,310.54,368.40,15.77,8.64" target="#b49">[50,</ref><ref type="bibr" coords="3,329.38,368.40,11.83,8.64" target="#b50">51]</ref>, or those specializing in medicine <ref type="bibr" coords="3,484.92,368.40,15.27,8.64" target="#b20">[21]</ref>, biomedical science <ref type="bibr" coords="3,188.08,379.36,16.60,8.64" target="#b51">[52]</ref> or chemistry <ref type="bibr" coords="3,261.99,379.36,15.77,8.64" target="#b52">[53,</ref><ref type="bibr" coords="3,281.00,379.36,11.83,8.64" target="#b53">54]</ref>. In contrast, open-ended tasks, such as conducting chemical synthesis planning <ref type="bibr" coords="3,226.38,390.32,16.60,8.64" target="#b54">[55]</ref> or offering healthcare support <ref type="bibr" coords="3,372.30,390.32,15.27,8.64" target="#b55">[56]</ref>, necessitate manual evaluation to effectively measure an LLM's capabilities. We discuss the limitation of these datasets and introduce a new QA dataset for retrieval-based science.</p><p coords="3,108.00,463.31,396.00,9.03;3,108.00,474.65,193.49,8.64;3,319.22,474.65,184.78,8.64;3,108.00,485.61,396.00,8.64;3,108.00,496.57,358.62,8.64;3,500.06,496.57,3.94,8.64;3,108.00,507.53,396.00,8.64;3,108.00,518.49,129.41,8.64;3,255.24,518.49,61.31,8.64;3,334.38,518.49,169.63,8.64;3,108.00,529.45,140.50,8.64;3,266.75,529.27,237.25,8.82;3,108.00,540.41,396.00,8.64;3,108.00,551.19,396.00,8.82;3,108.00,562.33,153.47,8.64;3,279.42,562.33,56.93,8.64;3,358.30,562.33,145.70,8.64;3,108.00,573.28,152.53,8.64">Retrieval-Augmented LLMs LLMs integrated with retrieval systems are broadly referred to as Retrieval-Augmented Generation (RAG) models <ref type="bibr" coords="3,303.95,474.65,15.27,8.64" target="#b18">[19]</ref>, with the key components being a database of documents, a query system for retrieving documents, and a pipeline to add retrieved documents to a model's context. RAG models have proved effective at biomedical and clinical QA tasks <ref type="bibr" coords="3,469.54,496.57,15.77,8.64" target="#b56">[57,</ref><ref type="bibr" coords="3,488.23,496.57,11.83,8.64" target="#b15">16]</ref>. While RAG systems are typically pipelines with a fixed number and order of steps, they can be composed of multi-hop searches <ref type="bibr" coords="3,239.97,518.49,15.27,8.64" target="#b57">[58]</ref>, or use Agents <ref type="bibr" coords="3,319.11,518.49,15.27,8.64" target="#b48">[49]</ref>, where an LLM is used to decide when to use retrieval to augment an answer <ref type="bibr" coords="3,251.48,529.45,15.27,8.64" target="#b42">[43]</ref>. RAG performance can be further improved with a priori prompting, where an LLM is prompted to consider using latent information instead of searching, or a posteriori prompting, where an LLM is asked to consider the accuracy of a retrieved result and possibly provide an alternative answer <ref type="bibr" coords="3,264.15,562.33,15.27,8.64" target="#b58">[59]</ref>. Active RAG <ref type="bibr" coords="3,339.03,562.33,16.60,8.64" target="#b59">[60]</ref> regenerates sentences using retrieval if they contain low-probability tokens.</p><p coords="3,108.00,624.36,396.00,9.03;3,108.00,635.70,174.20,8.64;3,315.67,635.70,101.78,8.64;3,450.92,635.70,53.09,8.64;3,108.00,646.66,35.41,8.64;3,174.83,646.66,101.66,8.64;3,296.91,646.66,35.12,8.64;3,349.22,646.66,154.78,8.64;3,108.00,657.62,273.32,8.64;3,413.35,657.62,90.66,8.64;3,108.00,668.58,396.00,8.64;3,108.00,679.54,108.47,8.64;3,248.49,679.54,207.39,8.64;3,476.90,679.54,27.11,8.64;3,108.00,690.50,396.00,8.64;3,108.00,701.46,396.00,8.64;3,108.00,712.42,396.00,8.64;3,108.00,723.38,94.96,8.64">Retrieval Methods RAG models connected to databases retrieve documents using fixed representations, such as Bag-of-Words or BM25 <ref type="bibr" coords="3,285.14,635.70,15.77,8.64" target="#b60">[61,</ref><ref type="bibr" coords="3,303.84,635.70,11.83,8.64" target="#b61">62]</ref>, pre-trained embeddings <ref type="bibr" coords="3,420.39,635.70,15.77,8.64" target="#b62">[63,</ref><ref type="bibr" coords="3,439.09,635.70,11.83,8.64" target="#b60">61]</ref>, or trainable encoders <ref type="bibr" coords="3,145.32,646.66,15.77,8.64" target="#b18">[19,</ref><ref type="bibr" coords="3,163.00,646.66,11.83,8.64" target="#b63">64]</ref>, which are trained offline <ref type="bibr" coords="3,278.40,646.66,16.60,8.64" target="#b63">[64]</ref> or online <ref type="bibr" coords="3,333.95,646.66,15.27,8.64" target="#b64">[65]</ref>. For models using open-ended sources such as the internet, phrase or keyword searches are used for retrieval <ref type="bibr" coords="3,383.54,657.62,15.77,8.64" target="#b65">[66,</ref><ref type="bibr" coords="3,401.52,657.62,11.83,8.64" target="#b48">49]</ref>. Retrieved documents are typically passed to the model as input tokens, but some models separately process retrieved information with cross-attention <ref type="bibr" coords="3,218.67,679.54,15.77,8.64" target="#b66">[67,</ref><ref type="bibr" coords="3,236.66,679.54,11.83,8.64" target="#b61">62]</ref>. Learning to rank and filter the retrieved documents <ref type="bibr" coords="3,458.09,679.54,16.60,8.64" target="#b67">[68]</ref> further improves the performance of RAG models. In our work, we evaluate Retrieval-Augmented Models that use keyword search systems and vector embedding retrieval. In particular, we focus on benchmarking against humans and uncover under what conditions LLMs can match human performance in information retrieval.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="3" coords="4,108.30,84.04,64.51,10.37">METHOD</head></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="3.1" coords="4,108.25,121.51,66.35,8.64">PAPERQA</head><p coords="4,108.00,150.37,209.06,8.64;4,324.79,150.37,179.22,8.64;4,108.00,161.33,261.75,8.64;4,377.13,161.33,50.44,8.64;4,431.56,161.33,72.44,8.64;4,108.00,172.29,396.00,8.64;4,108.00,183.25,396.00,8.64;4,108.00,194.21,396.00,8.64;4,108.00,205.17,396.00,8.64;4,108.00,215.95,396.00,8.82;4,108.00,226.91,396.00,8.82;4,108.00,238.05,225.11,8.64;4,350.35,238.05,153.66,8.64;4,108.00,248.83,396.00,8.82;4,108.00,259.96,396.00,8.64;4,108.00,270.92,396.00,8.64;4,108.00,281.70,396.00,8.82;4,108.00,292.84,173.26,8.64">The PaperQA system is an agent shown in Figure <ref type="figure" coords="4,321.05,150.37,3.74,8.64" target="#fig_0">1</ref>. The fundamental operations of PaperQA are to find relevant papers from online databases, such as Arxiv<ref type="foot" coords="4,369.75,159.66,3.49,6.05" target="#foot_0">1</ref> and Pubmed<ref type="foot" coords="4,427.58,159.66,3.49,6.05" target="#foot_1">2</ref> ; gather text from these papers; and synthesize information into a final answer. PaperQA's tools are composed of both external APIs and LLMs, described in detail below. Compared to a standard RAG, we make four key innovations. First, we decompose parts of a RAG and provide them as tools to an agent. This allows for some operations, such as search, to be performed multiple times, with different keywords, if the evidence collected is insufficient. Second, we use a map summarization step to gather evidence from multiple sources followed by a reduce step to answer. The map-reduce step increases the amount of sources that can be considered, and provides a scratchpad <ref type="bibr" coords="4,335.08,238.05,15.27,8.64" target="#b39">[40]</ref>, where the LLM can give intermediate evidence before formulating the final answer. Third, we utilise the LLM's ability to reason over text and provide numerical relevance scores for each chunk of text to the query question. In addition to the commonly used vector-embedding distances, we use these LLM-generated relevancy scores, adding another layer of retrieval. Finally, we make use of a priori and a posteriori prompting, tapping into the latent knowledge in LLMs.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="3.2" coords="4,108.25,338.70,52.62,8.64">TOOLS</head><p coords="4,108.00,367.56,396.00,8.64;4,108.00,378.52,396.00,8.64;4,108.00,389.48,396.00,8.64;4,108.00,400.44,396.00,8.64;4,108.00,411.40,396.00,8.64;4,108.00,422.36,396.00,8.64;4,108.00,433.31,176.97,8.64">PaperQA has three tools: search that finds relevant papers, gather evidence that collects most relevant chunks of papers relative to the query into a context library, and answer question which proposes an answer based on the accumulated contexts. These tools make use of three independent LLM instances, a summary LLM, an ask LLM, and an answer LLM, which ultimately take a string as input and output a status string while accumulating evidence to answer the question. The system prompts and the tools' descriptions appear in Appendices A.2 and A.3 respectively. The agent LLM is initialised with the following prompt:</p><p coords="4,114.52,461.76,368.22,4.91;4,114.52,469.73,368.22,4.91;4,114.52,477.70,364.04,4.91;4,114.52,485.67,359.85,4.91;4,114.52,493.64,343.12,4.91;4,114.52,501.61,46.03,4.91">Answer question: question. Search for papers, gather evidence, and answer. If you do not have enough evidence, you can search for more papers (preferred) or gather more evidence with a different phrase. You may rephrase or break-up the question in those steps. Once you have five or more pieces of evidence from multiple sources, or you have tried many times, call answer_question tool. You may reject the answer and try again if it is incomplete.</p><p coords="4,108.00,529.90,396.00,8.64;4,108.00,540.86,396.00,8.64;4,108.00,551.82,396.00,8.64;4,108.00,562.78,228.79,8.64;4,360.73,562.78,143.27,8.64;4,123.27,573.73,380.73,8.64;4,108.00,584.69,396.00,8.64;4,108.00,595.65,182.48,8.64">search The agent gives this tool keywords and (optionally) a year range. This queries a scientific literature search engine. Retrieved papers are added to a local bibliography for use by gather evidence. They are added by creating overlapping 4,000 character chunks which are embedded with the text-embedding-ada-002 model <ref type="bibr" coords="4,340.47,562.78,16.60,8.64" target="#b68">[69]</ref> and inserted into a vector database <ref type="bibr" coords="4,108.00,573.73,15.27,8.64" target="#b69">[70]</ref>. There is a failure rate associated with the performance of search engines, accessing papers, and parsing of PDFs. We explore this in Appendix C. This tool is always executed once with the full-text question before initialising the agent.</p><p coords="4,108.00,612.59,396.00,8.64;4,108.00,623.55,235.30,8.64;4,361.11,623.55,142.90,8.64;4,108.00,634.51,396.00,8.64;4,108.00,645.29,164.66,8.82;4,295.66,645.47,208.34,8.64;4,108.00,656.42,267.18,8.64">gather evidence This tool is given a question as input by the agent. This question is vectorembedded using the OpenAI text-embedding-ada-002 <ref type="bibr" coords="4,345.84,623.55,15.27,8.64" target="#b68">[69]</ref>, and relevant chunks based on vector search are returned from the vector database created in the search tool. Chunks are retrieved with maximal marginal relevance search <ref type="bibr" coords="4,275.87,645.47,16.60,8.64" target="#b70">[71]</ref> to increase the diversity of returned texts. Each retrieved chunk is fed to a summary LLM with the following prompt:</p><p coords="5,114.52,94.70,368.22,4.91;5,114.52,102.67,372.41,4.91;5,114.52,110.64,372.41,4.91;5,114.52,118.61,326.38,4.91;5,114.52,134.55,20.92,4.91;5,114.52,150.49,87.87,4.91;5,114.52,158.46,75.32,4.91;5,114.52,166.43,121.34,4.91">Summarize the text below to help answer a question. Do not directly answer the question, instead summarize to give evidence to help answer the question. Reply 'Not applicable' if text is irrelevant. Use summary_length. At the end of your response, provide a score from 1-10 on a newline indicating relevance to question. Do not explain your score. chunk Excerpt from citation Question: question Relevant Information Summary:</p><p coords="5,108.00,194.56,396.00,8.82;5,108.00,205.69,367.46,8.64">The returned chunks are then sorted by score and the top-k chunks are collected in a context library. The tool returns the top-1 chunk to the agent, so that the agent can respond to the top chunk.</p><p coords="5,108.00,222.63,396.00,8.64;5,108.00,233.59,396.00,8.64;5,108.00,244.55,396.00,8.64;5,108.00,255.51,328.15,8.64">The gather evidence tool is a map step that is always present in RAG systems. It provides an opportunity to reject irrelevant context and can be done concurrently to minimize the compute time. It is especially helpful for PDF parsing errors, which can be mitigated by having this step that can summarize garbled text with the question providing context to guide the summary.</p><p coords="5,108.00,272.44,396.00,8.64;5,108.00,283.40,396.00,8.64;5,108.00,294.36,197.25,8.64;5,323.40,294.36,180.60,8.64;5,108.00,305.32,346.35,8.64;5,108.00,465.67,396.00,8.64;5,108.00,476.62,396.00,8.64;5,108.00,487.58,396.00,8.64;5,108.00,498.54,164.51,8.64">answer question We first use the ask LLM to provide any useful information from the pre-trained LLM that might help with answering the original question (details are given in Appendix A.4), similar to the to the priori judgement explored in <ref type="bibr" coords="5,308.13,294.36,15.27,8.64" target="#b58">[59]</ref>. The output of the ask LLM is added to the chunks from the context library, and the final prompt to the answer LLM is as follows: The question in this prompt is the original question fed to the higher-level PaperQA agent, and the context comes from the collection of relevant chunks within the context library. The response from the the tool is returned to the agent, which may reject or accept the answer based as given in the agent's initialisation prompt given above.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="4" coords="5,108.30,530.45,129.36,10.37">THE LITQA DATASET</head><p coords="5,108.00,558.00,396.00,8.64;5,108.00,568.96,396.00,8.64;5,108.00,579.91,396.00,8.64;5,108.00,590.87,396.00,8.64;5,108.00,601.83,396.00,8.64;5,108.00,612.79,396.00,8.64;5,108.00,623.75,396.00,8.64;5,108.00,634.71,374.76,8.64">Existing benchmarks for scientific question-answering evaluate the ability of AI systems to present widely-known or widely-available information, or to answer questions given a specific context. These benchmarks are thus insufficient for evaluating an agent's ability to answer questions based on retrieved information. We thus introduce the LitQA dataset for PaperQA evaluation. The questions in LitQA are sourced from recent literature (after September 2021), so that we expect that they will not have been including in training for most language models, and are designed to be difficult or impossible to answer without retrieving the relevant paper. LitQA thus evaluates the ability both to retrieve necessary information and to present an accurate answer based on that information.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="5,108.00,651.26,83.59,8.96">Dataset description</head><p coords="5,195.48,651.65,308.52,8.64;5,108.00,662.60,396.00,8.64;5,108.00,673.56,396.00,8.64;5,108.00,684.52,396.00,8.64;5,108.00,695.48,137.68,8.64;5,251.91,695.48,3.74,8.64">The LitQA dataset consists of 50 multiple-choice questions, assembled by experts. All questions come from the biomedical domain. It has 5 Yes/No questions, 6 questions with 3 possible answers, 23 questions with 4 possible answers, 10 questions with 5 possible answers, 4 questions with 6 possible answers and finally 2 questions with 7 possible answers. We show examples of the questions in Table <ref type="table" coords="5,248.17,695.48,3.74,8.64" target="#tab_0">1</ref>.</p><p coords="5,108.00,712.03,396.00,9.03;5,108.00,723.38,396.00,8.64">Data collection All questions were written and reviewed by researchers in natural and biomedical sciences. Questions were assembled by first selecting a paper published after the September 2021 </p><formula xml:id="formula_0" coords="6,377.47,192.90,19.42,38.01">U8 U1 U35a Y5</formula><p coords="6,446.12,193.25,17.92,7.77;6,108.00,256.16,396.00,8.64;6,108.00,267.12,396.00,8.64;6,108.00,278.08,396.00,8.64;6,108.00,289.04,396.00,8.64;6,108.00,300.00,396.00,8.64;6,108.00,310.78,396.00,8.82;6,108.00,321.92,396.00,8.64;6,108.00,332.87,110.40,8.64">Hard cutoff and then devising a question from that paper that both refers to a novel finding in the paper and that is not presented in the paper abstract. We do not expect these findings to be presented in other papers or to be available in sources preceding the cutoff. For every question, distractor answers were also created, either by the question writer alone, or by using an LLM to provide a plausible answer to the given question. We take special care to only collect questions from papers published after the GPT-3.5/4 cutoff date in September 2021. This ensures the questions cannot be reliably answered using the latent knowledge of GPT-4. Each question was then independently reviewed by at least one other co-author.</p><p coords="6,108.00,349.42,396.00,9.03;6,108.00,360.77,396.00,8.64;6,108.00,371.73,396.00,8.64;6,108.00,382.51,396.00,8.82;6,108.00,393.65,60.48,8.64">Human performance We recruited five biomedical researchers with an undergraduate degree or higher to solve LitQA. They were given access to the internet and given three minutes per question (2.5 hours in total) to answer all questions, specifying the paper they used to choose the corresponding answer. Additionally, they were instructed to answer unsure if they cannot find the answer to a given question.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="5" coords="6,108.30,420.86,91.78,10.37">EXPERIMENTS</head><p coords="6,108.00,445.43,396.00,8.64;6,108.00,456.39,396.00,8.64;6,108.00,467.35,396.00,8.64;6,108.00,478.31,69.18,8.64">In this section we measure the performance of PaperQA on LitQA and other datasets, and compare to existing commercial products. We ablate all components of PaperQA on the LitQA dataset, showing their importance. Finally, we investigate the ability to retrieve relevant papers and the rate of hallucinations.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="5.1" coords="6,108.25,502.93,130.75,8.64">EXPERIMENTAL DETAILS</head><p coords="6,108.00,523.45,318.62,8.64;6,444.57,523.45,59.43,8.64;6,108.00,534.41,396.00,8.64;6,108.00,545.05,396.00,9.65;6,108.00,556.01,396.00,9.65;6,108.00,566.97,396.00,9.65;6,108.00,578.24,396.00,8.64;6,108.00,589.20,396.00,8.64;6,108.00,600.16,396.00,8.64;6,108.00,611.12,396.00,8.64;6,108.00,622.08,234.34,8.64">All of the experiments were implemented within LangChain's agent framework <ref type="bibr" coords="6,429.30,523.45,15.27,8.64" target="#b71">[72]</ref>. As described above, we use four different LLM instances with the following settings unless stated otherwise: agent LLM: GPT-4 OpenAIFunctions Agent with temperature τ agent = 0.5; summary LLM: GPT-3.5 always with temperature τ sum = 0.2; answer LLM: GPT-4 with temperature τ ans = 0.5; ask LLM: GPT-4 with temperature τ ask = 0.5. For the search engine, we use Google Scholar, where we collect the top-5 papers that are accessible. The implementation details are explained in an experiment in the appendix. We access papers through publicly available APIs, such as Arxiv, PMC, OpenAccess, PubMed, and our own local database of papers. Lastly, we set the number of sources to consider at each round of gather evidence to 20, and the count of evidence context to include in the final answer within answer question to 8.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="5.2" coords="6,108.25,646.70,62.00,8.64">RESULTS</head><p coords="6,108.00,667.22,396.00,8.64;6,108.00,678.18,396.00,8.64;6,108.00,689.14,307.13,8.64;7,108.00,341.07,102.97,8.64;7,217.20,341.07,286.80,8.64;7,108.00,352.03,373.76,8.64;7,492.39,352.03,11.62,8.64;7,108.00,362.98,396.00,8.64;7,108.00,373.94,396.00,8.64;7,108.00,384.90,396.00,8.64;7,108.00,395.86,396.00,8.64;7,108.00,406.82,396.00,8.64;7,108.00,417.78,362.75,8.64">Here we thoroughly evaluate PaperQA. We compare it against commercially available tools and human performance on LitQA. Next, we ablate the components of PaperQA and look into hallucinated citations. Finally, we evaluate PaperQA on several standard QA benchmarks. and Perplexity -in Table <ref type="table" coords="7,213.46,341.07,3.74,8.64" target="#tab_1">2</ref>. All commercial tools are specifically tailored to answering questions by retrieving scientific literature. We give them the same prompt as to PaperQA. From Table <ref type="table" coords="7,484.58,352.03,4.98,8.64" target="#tab_1">2</ref> we see that PaperQA outperforms all competing models and products, and is on par with that of human experts with access to the internet. Furthermore, we see the lowest rate of incorrectly answered questions out of all tools, which rivals that of humans. This emphasizes that PaperQA is better calibrated to express uncertainty when it actually is uncertain. Surprisingly, GPT-4 and Claude-2 perform better than random although the questions are from papers after their training cut-off date, suggesting they have latent knowledge, leading to useful bias towards answers that are more plausible.</p><p coords="7,108.00,434.72,396.00,8.64;7,108.00,445.67,396.00,8.64">PaperQA averaged 4,500 tokens (prompt + completion) for the more expensive LLMs (agent LLM, answer LLM, ask LLM) and 24,000 tokens for the cheaper, high-throughput LLM (summary LLM).</p><p coords="7,108.00,456.63,396.00,8.64;7,108.00,467.59,396.00,8.64;7,108.00,478.55,396.00,8.64;7,108.00,489.51,396.00,8.64;7,108.00,500.47,390.89,8.64">Based on commercial pricing as of September 2023, that gives a cost per question of $0.18 using the stated GPT-4 and GPT-3.5-turbo models. It took PaperQA on average about 2.4 hours to answer all questions, which is also on par with humans who were given 2.5 hours. A single instance of PaperQA would thus cost $3.75 per hour, which is a fraction of an average hourly wage of a desk researcher. We exclude other negligible operating costs, such as search engine APIs, or electricity.</p><p coords="7,108.00,523.86,396.00,9.03;7,108.00,535.21,396.00,8.64;7,108.00,545.85,396.00,8.96;7,108.00,556.81,396.00,8.96;7,108.00,568.09,396.00,8.64;7,108.00,579.05,396.00,8.64;7,108.00,589.69,212.81,8.96">How does PaperQA compare to expert humans? PaperQA shows similar results to those of the expert humans who answered the questions. To quantify this, we calculate the categorical correlation (Cramer's V ) of the responses for each human-human and human-PaperQA pair. Average human-human V is 0.66±0.03, whereas average human-PaperQA V is 0.67±0.02 (mean ± stderr), indicating that PaperQA is, on average, as correlated with human respondents as the human respondents are with each other, implying no discernable difference in responses. To compare, the average V between humans and Perplexity was 0.630 ± 0.05.</p><p coords="7,108.00,613.40,396.00,9.03;7,108.00,624.75,72.85,8.64;7,187.73,624.75,316.27,8.64;7,108.00,635.70,396.00,8.64;7,108.00,646.48,396.00,8.82;7,108.00,657.62,396.00,8.64;7,108.00,668.58,396.00,8.64;7,108.00,679.36,396.00,8.82;7,108.00,690.50,396.00,8.64;7,108.00,701.28,396.00,8.82;7,108.00,712.42,396.00,8.64;7,108.00,723.38,202.23,8.64;7,319.55,723.38,184.46,8.64;8,108.00,509.23,396.00,8.64;8,108.00,520.01,396.00,8.82;8,108.00,531.15,75.66,8.64">Ablating PaperQA We report performance on LitQA when toggling different parts and LLMs of PaperQA in Table <ref type="table" coords="7,183.99,624.75,3.74,8.64" target="#tab_2">3</ref>. Using GPT-4 as the answer LLM slightly outperforms Claude-2. When we look at the different components of PaperQA, we observe a major drop in performance when not including multiple-choice options as answers (no MC options) and using Semantic Scholar instead of Google Scholar. The former we explain with the fact that closed-form questions are easier than open-form ones, and the model can use keywords derived from the possible answers to search. The drop in performance of the linear settings, Vanilla RAG and No search, show the advantage of an agent-based model that can call tools multiple times until it is satisfied with the final answer. Surprisingly enough, not using the LLM's latent knowledge (no ask LLM) also hurts performance, despite the benchmark being based on information after the cutoff date -we suggest that the useful latent knowledge we find LLMs to possess in Table <ref type="table" coords="7,312.39,723.38,4.98,8.64" target="#tab_4">5</ref> helps the agent use the best pieces of evidence. Lastly, due to the retrieval-first nature of LitQA, where only a single chunk from the original paper includes the answer, both single citation and no summary LLM settings perform comparably to standard PaperQA.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="8,108.00,555.18,161.40,8.96">Does PaperQA Hallucinate Citations?</head><p coords="8,279.37,555.57,224.63,8.64;8,108.00,566.53,280.32,8.64;8,392.30,566.53,111.70,8.64;8,108.00,577.49,396.00,8.64;8,108.00,588.45,396.00,8.64;8,108.00,599.40,396.00,8.64;8,108.00,610.36,204.07,8.64;8,318.49,610.36,185.51,8.64;8,108.00,621.32,396.00,8.64;8,108.00,632.28,396.00,8.64;8,108.00,643.24,396.00,8.64;8,108.00,654.20,354.15,8.64">We assessed citation hallucinations from GPT-3.5, GPT-4, and Claude-2 using 52 questions from an earlier version of LitQA <ref type="foot" coords="8,388.32,564.86,3.49,6.05" target="#foot_3">3</ref> , where we ask the LLM to answer the question in long-form and provide citations. The citations were assessed manually to verify existence of the paper, the accuracy of the citation details, and the relevance of the cited paper to the provided answer. Scores were based on the total number of citations N, rather than number of answers. We show hallucination results in Table <ref type="table" coords="8,314.75,610.36,3.74,8.64" target="#tab_3">4</ref>. Hallucinated citations are categorized as full hallucination, citation inaccuracy, or context irrelevance (the paper cited exists, but is irrelevant to the question). We tested numerous times, but no hallucinated citations were produced through Pa-perQA. Anecdotally, we have observed PaperQA citing a secondary source mentioned in a primary source which could lead to a hallucination since it has no access to the secondary source.</p><p coords="8,108.00,670.75,396.00,9.03;8,108.00,682.09,396.00,8.64;8,108.00,693.05,396.00,8.64;9,108.00,285.80,396.00,8.64;9,108.00,296.76,396.00,8.64;9,108.00,307.33,396.00,9.03;9,108.00,318.68,396.00,8.64;9,108.00,329.64,396.00,9.33;9,108.00,340.60,396.00,8.64;9,108.00,351.17,226.43,9.03;9,356.21,351.56,147.79,8.64;9,108.00,362.52,396.00,8.64;9,108.00,373.09,157.87,9.03;9,289.21,373.48,214.79,8.64;9,108.00,384.44,40.13,8.64">Evaluation on QA Benchmarks We evaluate PaperQA on standard QA multiple-choice datasets commonly used to assess LLMs. These benchmarks test for commonly known facts, which are most commonly not found in academic papers, but in textbooks. Here we measure how well PaperQA, which relies on information from papers, can perform on such questions. For all datasets, we evaluate on 100 randomly sampled questions (see Appendix E for details). We evaluate on the following datasets: PubMedQA [21] consists of yes/no/maybe questions that can be answered using a provided context. To mimic the LitQA setting, the context is not provided to the model. We call this PubMedQ blind to distinguish from PubMedQA. Furthermore, we omit questions that have a "maybe" ground-truth answer, as such questions may have evolved into definitive "yes" or "no" answers since the dataset was released in 2019. MedQA <ref type="bibr" coords="9,337.02,351.56,16.60,8.64" target="#b72">[73]</ref> consists of multiple-choice questions based on the United States Medical License Exams (USMLE) and covers multiple languages. We use the questions in English. BioASQ <ref type="bibr" coords="9,269.24,373.48,16.60,8.64" target="#b73">[74]</ref> is a biomedical QA dataset. We only use the yes/no questions.</p><p coords="9,108.00,401.37,33.43,8.64;9,152.92,401.37,351.08,8.64;9,108.00,412.33,396.00,8.64;9,108.00,423.29,396.00,8.64;9,108.00,434.25,396.00,8.64;9,108.00,445.21,396.00,9.33;9,108.00,456.17,396.00,8.64;9,108.00,467.12,396.00,8.64;9,108.00,478.08,396.00,8.64;9,108.00,489.04,396.00,8.64;9,108.00,500.00,396.00,8.64;9,108.00,510.78,254.41,8.82">In Table <ref type="table" coords="9,144.69,401.37,4.98,8.64" target="#tab_4">5</ref> we compare PaperQA to GPT-4 and AuoGPT (we do not measure the performance of commercially available tools as they have no API and require manual evaluation). For all benchmarks and methods, we use zero-shot inference. While AutoGPT underperforms GPT-4, PaperQA outperforms GPT-4 in all datasets. We see that the biggest gap in performance, and the biggest improvement when equipping GPT-4 with PaperQA search is on PubMedQA blind . In Appendix F we find that PaperQA matches the performance of GPT-4 that uses ground-truth context (which contains the correct answer by design), showing it is able to retrieve context information that is on par with the ground-truth one. We see a smaller gap between PaperQA and GPT-4 on MedQA, which we explain with the fact that MedQA is based on medical examinations and requires knowledge found in textbooks, instead of academic papers. Finally, we make the observation that GPT-4, on average, performs better with posteriori reasoning when using PaperQA.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="6" coords="9,108.30,541.96,85.59,10.37">LIMITATIONS</head><p coords="9,108.00,568.96,396.00,8.64;9,108.00,579.91,396.00,8.64;9,108.00,590.87,396.00,8.64;9,108.00,601.83,396.00,8.64;9,108.00,612.79,40.31,8.64">PaperQA leverages fact, processes and concepts from underlying research papers; transforming that information into human and machine interpretable context. We have an underlying assumption from this that the information in the underlying papers is correct, which may not hold. Although we give some "signals" to the model like the journal name and citation count, these are not faithful indicators of quality.</p><p coords="9,108.00,629.73,396.00,8.64;9,108.00,640.69,396.00,8.64;9,108.00,651.65,396.00,8.64;9,108.00,662.60,118.18,8.64">Our models and benchmarks are affected by the changing nature of science and the availability of scientific literature: some of the questions in LitQA may have new correct answers or become invalid over time. Users of this benchmark should therefore limit papers used to answer the questions to be cutoff at September 15, 2023.</p><p coords="9,108.00,679.54,260.78,8.64;9,403.77,679.54,100.23,8.64;9,108.00,690.50,396.00,8.64;9,108.00,701.46,396.00,8.64;9,108.00,712.42,396.00,8.64;9,108.00,723.38,143.21,8.64">While recent work has been conducted on prompt optimization <ref type="bibr" coords="9,372.48,679.54,15.77,8.64" target="#b74">[75,</ref><ref type="bibr" coords="9,391.94,679.54,11.83,8.64" target="#b75">76]</ref>, the complex setting of multiple agents with individual prompts is unsolved. Specifically, the task becomes a non-trivial, bi-level optimization problem. Consequently, discerning the impact of manual prompt adjustments becomes difficult. Thus, it is unlikely our prompts are optimal and it is difficult to assess which pieces of the prompts are necessary.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head n="7" coords="10,108.30,84.04,87.08,10.37">CONCLUSION</head><p coords="10,108.00,109.19,396.00,8.64;10,108.00,120.15,396.00,8.64;10,108.00,131.11,396.00,8.64;10,108.00,142.07,396.00,8.64;10,108.00,153.03,396.00,8.64;10,108.00,163.99,396.00,8.64">We introduced PaperQA, a Retrieval-Augmented Generative (RAG) agent that can answer scientific questions better than other LLMs and commercial products. We found PaperQA to be more costefficient than humans, while still retaining its accuracy on par with human researchers. We measured the hallucination rate of citations for recent LLMs to be between 40-60%, whereas we were not able to find a single hallucinated citation in PaperQA's responses. We also introduced LitQAa benchmark of 50 questions that require retrieving information from full-text scientific papers.</p><p coords="10,108.00,174.95,396.00,8.64;10,108.00,185.91,396.00,8.64;10,108.00,196.86,396.00,8.64;10,108.00,207.82,396.00,8.64;10,108.00,218.78,396.00,8.64;10,108.00,229.74,396.00,8.64;10,108.00,240.70,396.00,8.64;10,108.00,251.66,396.00,8.64;10,108.00,262.62,396.00,8.64;10,108.00,273.58,160.48,8.64">The PaperQA system works independently of the underlying model, with various combinations of Claude-2, GPT-3.5, and GPT-4 providing strong results on LitQA. The most important attributes of PaperQA are its ability to dynamically use RAG tools, retrieve full-text papers, and iterate on the answer through the agent's decision-making. We hope this open-source implementation of a scientific question-answering system illuminates the design of future RAG agents and tools that reduce hallucinations in LLMs. With such advancements, we believe scientific research will be carried at a fraction of the cost and a multiple of the speed, spurring faster innovation within the natural sciences. By augmenting researchers with a literature review tool, we aim to minimise the time spend searching literature, and rather maximize the amount of productive hours spend carrying out deep thinking for scientific research.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="17,108.30,84.04,217.67,10.37">B AUTOGPT IMPLEMENTATION DETAILS</head><p coords="17,108.00,111.47,396.00,8.64;17,108.00,122.43,396.00,8.64;17,108.00,133.39,396.00,8.64;17,108.00,144.35,396.00,8.64;17,108.00,155.31,375.65,8.64">We used LangChain's AutoGPT implementation from LangChain experimental 0.0.8 version. As AutoGPT can run indefinitely, we added a stopping condition after 10 searches. For LitQA, it is asked to answer the question based on all previous information; for other datasets, we restart it and make sure it chooses one of the options, so that we have an answer to all questions. The agent LLM used was GPT-4-0314. It has access to 3 tools: Google search, write to file, and read from file.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="17,108.30,187.02,184.50,10.37;17,108.25,214.45,160.54,8.64">C PAPER RETRIEVAL EVALUATION C.1 ABSTRACT RETRIEVAL METRIC</head><p coords="17,108.00,236.62,396.00,8.64;17,108.00,247.58,396.00,8.64;17,108.00,258.54,396.00,8.64;17,108.00,269.49,150.97,8.64">As part of the development of PaperQA, we evaluate the efficacy of paper searching using different search API engines. In order to do that, we create a new metric composed of 500 questions. The goal is to create questions that are likely to have only a small number of papers that would include an answer. The exact methodology is:</p><p coords="17,131.41,292.25,372.59,8.64;17,143.87,303.21,134.49,8.64;17,131.41,317.99,372.59,8.64;17,143.87,328.95,158.20,8.64;17,131.41,343.73,337.93,8.64">1. Search PubMed with 20,000 unique tuples of five keywords within the field of medicine, biology and artificial intelligence. 2. Only keep the search results with a single paper that is not a review (where a review is assumed to have more than 20 authors). 3. Instruct GPT-4 to generate a question that could be answered by the abstract only.</p><p coords="17,108.00,366.48,353.95,8.64">The question generation follows a 5-shot prompting technique, the system prompt being:</p><p coords="17,114.52,390.38,376.59,4.91;17,114.52,398.35,368.22,4.91;17,114.52,406.32,355.67,4.91">You are a helpful assistant helping completing the following task. The goal is to create a question that could be answered by the paper with these abstracts. Be creative and think of a question that a scientist would ask without knowing the paper he is looking for.</p><p coords="17,108.00,434.39,384.75,8.64">A concatenated example of such abstract-question pair (red being the LLM completion) follows:</p><p coords="17,114.52,462.84,25.11,4.91;17,114.52,470.81,221.77,4.91;17,114.52,486.75,37.66,4.91;17,114.52,494.72,359.86,4.91;17,114.52,502.69,355.67,4.91;17,114.52,510.66,364.04,4.91;17,114.52,518.63,66.95,4.91;17,114.52,526.60,359.85,4.91;17,114.52,534.57,355.67,4.91;17,114.52,542.54,108.79,4.91;17,114.52,558.48,37.66,4.91;17,114.52,566.45,355.67,4.91;17,114.52,574.42,117.16,4.91">Title: DeepDTA: deep drug-target binding affinity prediction Abstract: Motivation: The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. [...] One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). Results: The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. [...] Question: Are there any models that use 1D representations of targets and drugs for drug target binding affinity prediction?</p><p coords="17,108.00,602.70,396.00,8.64;17,108.00,613.66,111.28,8.64">This dataset is then used to search for the top-10 papers using 20 keywords that were generated using the following prompt:</p><p coords="17,114.52,642.11,209.21,4.91;17,114.52,650.08,364.04,4.91;17,114.52,658.05,372.41,4.91;17,114.52,666.02,372.41,4.91;17,114.52,673.99,200.85,4.91;17,114.52,681.96,238.50,4.91;17,114.52,689.93,234.32,4.91;17,114.52,697.90,138.08,4.91;17,114.52,705.87,179.92,4.91;17,114.52,713.84,142.26,4.91;18,108.00,85.34,247.35,8.64;18,365.79,85.34,138.21,8.64;18,108.00,96.30,396.00,8.64;18,108.00,107.26,86.40,8.64;18,217.15,107.26,286.85,8.64;18,108.00,118.22,396.00,8.64;18,108.00,129.17,48.98,8.64">We want to answer the following question: question Provide num_keywords unique keyword searches (one search per line) and year ranges that will find papers to help answer the question. Do not use boolean operators. Make sure not to repeat searches without changing the keywords or year ranges. Make some searches broad and some narrow. The current year is get_year(). Use this format: 'X. [keywords], [start year]-[end year]' For example, a list of 3 keywords would be formatted as: 1. 'keyword1, keyword2, 2020-2021 2. 'keyword3, keyword4, keyword5, 2020-2021 3. 'keyword1, keyword2, 2020-2021' We thus evaluate recall, i.e. finding the original paper. Figure <ref type="figure" coords="18,358.08,85.34,4.98,8.64" target="#fig_2">2</ref> shows the cumulative recall curve, where Google Scholar and Semantic Scholar show outstanding ability to retrieve the original paper. Although CORE API <ref type="bibr" coords="18,197.48,107.26,16.60,8.64" target="#b77">[78]</ref> does not perform on par with the other two, we include it here as their main contribution to the field of scientific literature is their standardisation of open-access article repositories.  </p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="18,108.25,405.74,164.23,8.64">C.2 FULL-TEXT RETRIEVAL METRIC</head><p coords="18,108.00,429.12,396.00,8.64;18,108.00,440.08,396.00,8.64;18,108.00,451.04,396.00,8.64;18,108.00,462.00,310.72,8.64;18,108.00,651.53,182.17,8.64;18,108.00,662.48,182.17,8.64;18,108.00,673.44,182.17,8.64;18,108.00,684.40,124.34,8.64">As the abstract retrieval from Appendix C.1 does not sufficiently cover all the use cases of PaperQA, we also use an earlier version of LitQA to evaluate our search pipeline, but now considering questions that are synthesized from articles' bodies and not abstracts. Moreover, we examine the ability of our pipeline to find, access and parse the original papers of these questions. Cumulative probability distributions of finding, accessing and parsing the original paper from LitQA by running API searches using GPT-4 for keyword generation.</p><p coords="18,295.59,508.88,21.89,8.64;18,326.01,508.49,175.50,9.03;18,295.59,519.84,205.92,8.64;18,295.59,530.80,205.92,8.64;18,295.59,541.76,205.92,8.64;18,295.59,552.72,205.92,8.64;18,295.59,563.68,112.18,8.64;18,417.73,563.68,42.89,8.64;18,196.67,701.46,307.34,8.64;18,108.00,712.42,396.00,8.64;18,108.00,723.38,396.00,8.64;19,108.00,85.34,396.00,8.64;19,108.00,96.30,396.00,8.64;19,108.00,107.26,396.00,8.64;19,108.00,118.22,396.00,8.64;19,108.00,129.17,318.16,8.64">Table <ref type="table" coords="18,322.14,508.88,3.88,8.64">7</ref>: Retrieval AUC (Full-Text). We evaluate keyword generation and search between two LLMs and two search engines. We also evaluate our pipeline for accessing papers and parsing their PDFs. The metric displayed is the normalized area under the curve from Figure <ref type="figure" coords="18,410.26,563.68,4.98,8.64" target="#fig_3">3</ref> on the left.   <ref type="table" coords="18,188.40,701.46,4.98,8.64">7</ref> shows superior performance of Google Scholar over Semantic Scholar. We believe this is thanks to Google Scholar's ability to search through the text of articles, whereas Semantic Scholar is limited to titles, authors and abstracts only. Effectively, we are able to parse almost all the papers we have access to. Notice the marginally better performance of GPT-4, which is likely due to it better following the instructions from the prompt. We expect that some prompt optimization might bring the performance of the two LLMs closer together. Lastly, note that since running this evaluation, we have improved our access to papers with Google Scholar's open-access links, so it is likely the final performance of parsed papers would be even better.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="19,108.30,162.86,157.26,10.37">D HALLUCINATION DATASET</head><p coords="19,108.00,191.48,296.53,8.64">To evaluate hallucinations, the following prompt was given to each model:</p><p coords="19,114.52,219.93,338.93,4.91;19,114.52,227.90,343.12,4.91;19,114.52,235.87,142.27,4.91">Answer the question below, with citations to primary sources that help answer the question. Cite the sources using format -(Foo et al., 2010) -note that the whole citation is always in parantheses.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="19,108.30,279.24,268.15,10.37">E EVALUATIONS ON STANDARD QA BENCHMARKS</head><p coords="19,108.00,307.85,396.00,8.64;19,108.00,318.81,270.22,8.64">For each dataset, we provide the questions ids, together with the formatted question and options list provided in the prompt. Please refer to the Supplementary Material.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="19,108.30,352.50,210.57,10.37">F QUALITY OF DISCOVERED EVIDENCE</head><p coords="19,108.00,381.11,396.00,8.64;19,108.00,392.07,396.00,8.64;19,108.00,403.03,114.37,8.64;19,232.18,403.03,271.82,8.64;19,108.00,413.99,396.00,8.64;19,108.00,424.95,310.56,8.64">To evaluate the quality of the discovered evidence, we compare the PaperQA discovered evidence to the ground-truth evidence provided in PubMedQA, which is sufficient to answer the questions correctly by design. In Table <ref type="table" coords="19,224.78,403.03,4.98,8.64" target="#tab_8">8</ref> we show that the PaperQA discovered evidence is competitive to the ground-truth context. Furthermore, PaperQA finds complementary information to the one provided in the ground-truth context, further improving results when both are provided.  </p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="19,108.30,584.23,217.90,10.37">G IMPACT OF PARAMETRIC KNOWLEDGE</head><p coords="19,108.00,612.84,396.00,8.64;19,108.00,623.80,39.69,8.64">In order to test whether including parametric knowledge in the gathered context is useful, we prompt PaperQA:</p><p coords="19,114.52,652.25,368.22,4.91;19,114.52,660.22,364.04,4.91;19,114.52,668.19,359.85,4.91;19,114.52,676.16,364.04,4.91;19,114.52,684.13,125.53,4.91">Write an answer (about 200 words, but can be longer if necessary) for the question below based on the provided context. If the context provides insufficient information and the question cannot be directly answered, reply ''I cannot answer''. For each part of your answer, indicate which sources most support it via valid citation markers at the end of sentences, like (Example2012).</p><p coords="19,108.00,712.42,396.00,8.64;19,108.00,723.38,372.61,8.64">Followed by pre-gathered context with relevance scores, some extra background information, and the question. The extra background information represents the LLMs' parametric knowledge.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="20,108.25,85.34,162.36,8.64">G.1 CONTRADICTING INFORMATION</head><p coords="20,108.00,105.86,396.00,8.64;20,108.00,116.82,396.00,8.64;20,108.00,127.78,396.00,8.64;20,108.00,138.74,304.53,8.64">In the first example, we ask: "Are COVID-19 vaccines effective?". The goal of this experiment is to evaluate the inclusion of background information that contradicts gathered context. Thus, while the provided context supports the efficacy of covid vaccines, we provide the model with the following background information: "COVID-19 vaccines are known to be ineffective."</p><p coords="20,108.00,155.68,396.00,8.64;20,108.00,166.63,321.62,8.64;20,108.00,255.25,396.00,8.64;20,108.00,266.21,396.00,8.64;20,108.00,277.17,396.00,8.64;20,108.00,288.13,295.41,8.64">With the contradicting background information, PaperQA responds that it cannot answer. However, if the extra contradicting information is excluded, the model provides an answer: When the background information (or parametric knowledge) contradicts context, PaperQA opts to not answer, indicating its recognition of a contradiction with established scientific understanding. This example shows the model's capability to discern and respond appropriately to accurate information, while avoiding potentially misleading or incorrect assertions.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="20,108.25,313.13,165.75,8.64">G.2 ABSENCE OF KEY INFORMATION</head><p coords="20,108.00,333.65,396.00,8.64;20,108.00,344.61,396.00,8.64;20,108.00,355.57,175.19,8.64">As a second example, we ask PaperQA: "What temperature does water turn to plasma?" and provide it with context that is relevant but insufficient to answer the question. Then, we provide the model with the following background information:</p><p coords="20,108.00,372.51,396.00,8.64;20,108.00,383.47,396.00,8.64;20,108.00,394.43,396.00,8.64;20,108.00,405.39,33.09,8.64">"Water turns into plasma under extreme conditions of temperature and pressure. Plasma is the fourth state of matter, beyond solid, liquid, and gas. It's a super-heated state where atoms are ionized, meaning electrons are stripped from atoms. This typically occurs at temperatures exceeding 20,000 Kelvin."</p><p coords="20,108.00,422.32,143.18,8.64">In this example, the model answers:</p><p coords="20,114.52,450.77,347.30,4.91;20,114.52,458.74,251.06,4.91">Water transitions into the plasma state under extreme conditions of temperature and pressure, typically at temperatures exceeding 20,000 Kelvin.</p><p coords="20,108.00,487.03,386.14,8.64">Excluding the background information results in PaperQA responding that it is unable to answer.</p><p coords="20,108.00,503.96,396.00,8.64;20,108.00,514.92,396.00,8.64;20,108.00,525.88,396.00,8.64;20,108.00,536.84,40.96,8.64">Thus, the role of parametric knowledge is crucial in shaping the model's responses: when it contradicts the context, the model may refrain from answering due to the conflict, whereas supportive parametric knowledge enables the model to provide detailed and informed responses when context is lacking.</p></div><figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_0" coords="3,108.00,233.41,396.00,9.03;3,108.00,244.76,396.00,8.64;3,108.00,255.72,396.00,8.64;3,108.00,266.67,396.00,8.64;3,108.00,277.63,396.00,8.64;3,108.00,288.59,396.00,8.64;3,108.00,299.55,214.44,8.64;3,107.47,80.82,397.02,142.88"><head>Figure 1 :</head><label>1</label><figDesc>Figure 1: PaperQA Workflow Diagram.PaperQA is an agent that transforms a scientific question into an answer with cited sources. The agent utilizes three tools -search, gather evidence, and answer question. The tools enable it to find and parse relevant full-text research papers, identify specific sections in the paper that help answer the question, summarize those section with the context of the question (called evidence), and then generate an answer based on the evidence. It is an agent, so that the LLM orchestrating the tools can adjust the input to paper searches, gather evidence with different phrases, and assess if an answer is complete.</figDesc><graphic coords="3,107.47,80.82,397.02,142.88" type="bitmap"/></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_1" coords="5,114.52,333.77,368.22,4.91;5,114.52,341.74,376.59,4.91;5,114.52,349.71,372.41,4.91;5,114.52,357.68,355.67,4.91;5,114.52,365.65,368.22,4.91;5,114.52,373.62,41.84,4.91;5,114.52,389.56,29.29,4.91;5,114.52,405.50,154.82,4.91;5,114.52,421.44,75.32,4.91;5,114.52,437.38,29.29,4.91"><head/><label/><figDesc>Write an answer (answer_length) for the question below based on the provided context. If the context provides insufficient information, reply ''I cannot answer''. For each part of your answer, indicate which sources most support it via valid citation markers at the end of sentences, like (Example2012). Answer in an unbiased, comprehensive, and scholarly tone. If the question is subjective, provide an opinionated answer in the concluding 1</figDesc></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_2" coords="18,108.00,307.36,182.16,9.03;18,108.00,318.70,182.17,8.64;18,108.00,329.66,182.17,8.64;18,108.00,340.62,182.17,8.64;18,108.00,351.58,182.17,8.64;18,108.00,362.54,182.17,8.64;18,108.00,373.50,65.06,8.64;18,108.00,144.79,182.17,151.81"><head>Figure 2 :</head><label>2</label><figDesc>Figure 2: Retrieval Probability (Abstract).Cumulative probability distributions of finding, accessing and parsing the original paper from the described PubMed-based dataset by running API searches using GPT-4 for keyword generation. Uncertainty is shown by lighter shadows.</figDesc><graphic coords="18,108.00,144.79,182.17,151.81" type="bitmap"/></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_3" coords="18,108.00,640.18,182.16,9.03;18,108.00,651.53,182.17,8.64;18,108.00,662.48,182.17,8.64;18,108.00,673.44,182.17,8.64;18,108.00,684.40,124.34,8.64;18,108.00,477.61,182.17,151.81"><head>Figure 3 :</head><label>3</label><figDesc>Figure 3: Retrieval Probability (Full-Text).Cumulative probability distributions of finding, accessing and parsing the original paper from LitQA by running API searches using GPT-4 for keyword generation.</figDesc><graphic coords="18,108.00,477.61,182.17,151.81" type="bitmap"/></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_4" coords="18,108.00,701.46,396.00,8.64;18,108.00,712.42,396.00,8.64;18,108.00,723.38,396.00,8.64"><head>Figure 3</head><label>3</label><figDesc>Figure 3 and Table7shows superior performance of Google Scholar over Semantic Scholar. We believe this is thanks to Google Scholar's ability to search through the text of articles, whereas Semantic Scholar is limited to titles, authors and abstracts only. Effectively, we are able to parse</figDesc></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" xml:id="fig_5" coords="20,114.52,195.08,376.59,4.91;20,114.52,203.05,255.24,4.91;20,114.52,211.02,12.55,4.91;20,114.52,218.99,359.85,4.91;20,114.52,226.96,347.30,4.91"><head>Yes, COVID- 19</head><label>19</label><figDesc>vaccines are effective. The BNT162b2 and ChAdOx1 nCoV-19 vaccines have shown effectiveness against the delta variant, with the second[...] ... Therefore, while the vaccines are effective, their effectiveness can vary based on the specific vaccine, the variant of the virus, and the time elapsed since vaccination.</figDesc></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_0" coords="6,108.00,82.66,396.00,128.32"><head>Table 1 :</head><label>1</label><figDesc>LitQA Dataset Examples. Three example questions from the dataset with correct answers bolded. The difficulty annotated comes from our observations in experiments given in Section 5.</figDesc><table coords="6,121.12,118.46,50.00,7.77"><row><cell>ID Question</cell></row></table></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_1" coords="7,108.00,82.66,396.00,231.50"><head>Table 2 :</head><label>2</label><figDesc>Evaluation on LitQA. We compare PaperQA with other LLMs, the AutoGPT agent, and commercial products that use RAG. AutoGPT was run with GPT-4, where other implementation details are given in the Appendix B. Elicit.AI was run on default settings, Perplexity was run in academic mode, Perplexity Co-pilot was run on default settings (perplexity model, "all sources"), and "Assistant by Scite " was run on default settings. Each question was run on a new context (thread) and all commercial products were evaluated on September 27, 2023. We report averages over a different number of runs for each.</figDesc><table coords="7,115.84,173.04,380.35,141.12"><row><cell/><cell/><cell/><cell>Response</cell><cell/><cell>Score</cell><cell/></row><row><cell>Model</cell><cell>Samples</cell><cell cols="5">Correct Incorrect Unsure Accuracy ( Correct All ) Precision ( Correct Sure )</cell></row><row><cell>Random</cell><cell>100</cell><cell>10.2</cell><cell>29.5</cell><cell>10.3</cell><cell>20.4%</cell><cell>25.7%</cell></row><row><cell>Human</cell><cell>5</cell><cell>33.4</cell><cell>4.6</cell><cell>12.0</cell><cell>66.8%</cell><cell>87.9%</cell></row><row><cell>Claude-2</cell><cell>3</cell><cell>20.3</cell><cell>26.3</cell><cell>3.3</cell><cell>40.6%</cell><cell>43.6%</cell></row><row><cell>GPT-4</cell><cell>3</cell><cell>16.7</cell><cell>16.3</cell><cell>17.0</cell><cell>33.4%</cell><cell>50.6%</cell></row><row><cell>AutoGPT</cell><cell>3</cell><cell>20.7</cell><cell>7.3</cell><cell>22.0</cell><cell>41.4%</cell><cell>73.9%</cell></row><row><cell>Elicit</cell><cell>1</cell><cell>12.0</cell><cell>16.0</cell><cell>22.0</cell><cell>24.0%</cell><cell>42.9%</cell></row><row><cell>Scite</cell><cell>1</cell><cell>12.0</cell><cell>21.0</cell><cell>17.0</cell><cell>24.0%</cell><cell>36.4%</cell></row><row><cell>Perplexity</cell><cell>1</cell><cell>9.0</cell><cell>10.0</cell><cell>31.0</cell><cell>18.0%</cell><cell>47.4%</cell></row><row><cell>Perplexity (Co-pilot)</cell><cell>1</cell><cell>29.0</cell><cell>10.0</cell><cell>12.0</cell><cell>58.0%</cell><cell>74.4%</cell></row><row><cell>PaperQA</cell><cell>4</cell><cell>34.8</cell><cell>4.8</cell><cell>10.5</cell><cell>69.5%</cell><cell>87.9%</cell></row></table></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_2" coords="8,108.00,82.66,396.00,232.91"><head>Table 3 :</head><label>3</label><figDesc>Ablation of LLM Types on LitQA (left). We compare using different LLMs for the answer LLM and summary LLM, averaged over 2 runs. Ablation of PaperQA Components on LitQA (right). No summary LLM setting only implements vector retrieval without any summarizaton and relevance scoring. Single citation only uses the best scoring chunk from the context library. No ask LLM ignores including the LLM's latent knowledge within the context of the answer LLM. No search setting starts with all papers from LitQA already collected and runs gather evidence once. Vanilla RAG setting runs the search tool thrice, followed by a single call to gather evidence and answer question. Semantic Scholar uses Semantic Scholar instead of Google Scholar. No MC options provides no multiple-choice answers as options within the question prompt. All ablations were done with a single run.</figDesc><table coords="8,117.48,218.09,383.25,97.48"><row><cell>Model</cell><cell/><cell/><cell/><cell>Ablation</cell><cell cols="3">Correct Incorrect Unsure</cell></row><row><cell>Answer Summary</cell><cell cols="3">Correct Incorrect Unsure</cell><cell>PaperQA</cell><cell>33.5</cell><cell>5.0</cell><cell>11.5</cell></row><row><cell>Claude-2 GPT-3.5</cell><cell>32.5</cell><cell>7.0</cell><cell>10.5</cell><cell>No summary LLM</cell><cell>29.0</cell><cell>10.0</cell><cell>11.0</cell></row><row><cell>Claude-2 GPT-4</cell><cell>26.5</cell><cell>9.0</cell><cell>14.5</cell><cell>Single citation</cell><cell>27.0</cell><cell>10.0</cell><cell>13.0</cell></row><row><cell>GPT-4 GPT-3.5 GPT-4 GPT-4</cell><cell>33.5 31.5</cell><cell>5.0 7.0</cell><cell>11.5 11.5</cell><cell>No ask LLM No search Vanilla RAG</cell><cell>23.0 23.0 22.0</cell><cell>14.0 7.0 6.0</cell><cell>13.0 20.0 22.0</cell></row><row><cell/><cell/><cell/><cell/><cell>Semantic Scholar</cell><cell>21.0</cell><cell>4.0</cell><cell>25.0</cell></row><row><cell/><cell/><cell/><cell/><cell>No MC options</cell><cell>18.0</cell><cell>6.0</cell><cell>26.0</cell></row></table></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_3" coords="8,108.00,334.55,396.00,147.03"><head>Table 4 :</head><label>4</label><figDesc>Comparison</figDesc><table coords="8,132.36,414.20,347.28,67.39"><row><cell>LLM</cell><cell>Valid (%)</cell><cell/><cell>Hallucinated (%)</cell><cell/><cell>N</cell></row><row><cell/><cell/><cell cols="3">Full Hallucination Citation Inaccuracy Context Irrelevance</cell><cell/></row><row><cell>GPT-3.5</cell><cell>52.50%</cell><cell>33.75%</cell><cell>12.50%</cell><cell>1.25%</cell><cell>80</cell></row><row><cell>GPT-4</cell><cell>60.78%</cell><cell>29.41%</cell><cell>3.92%</cell><cell>5.88%</cell><cell>51</cell></row><row><cell>Claude-2</cell><cell>39.71%</cell><cell>42.65%</cell><cell>4.41%</cell><cell>13.24%</cell><cell>68</cell></row><row><cell>PaperQA</cell><cell>100%</cell><cell>0%</cell><cell>0%</cell><cell>0%  *</cell><cell>237</cell></row></table><note coords="8,197.79,334.55,306.21,9.03;8,108.00,345.72,396.00,8.82;8,108.00,356.86,396.00,8.64;8,108.00,367.82,244.01,8.64;8,355.39,365.93,4.08,6.12;8,359.97,367.82,144.03,8.64;8,108.00,378.78,396.00,8.64;8,108.00,389.74,40.17,8.64"><p>of Hallucination in Citations. We compare PaperQA's hallucination rates of citations with three pre-trained LLMs. Hallucinated refers to references that are either nonexistent, partially inaccurate, or have content that does not match the claim. Scores are calculated for each LLM based on N number of citations provided by the model. * For context irrelevance only, all 237 citations were evaluated via GPT-4, with 25 additionally checked by experts and 0 were found to be irrelevant.</p></note></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_4" coords="9,108.00,82.66,396.00,173.16"><head>Table 5 :</head><label>5</label><figDesc>Evaluation of PaperQA on Standard QA Benchmarks. We evaluate PaperQA on several multiple-choice QA datasets. PubMedQA blind is a version of the PubMedQA, where we obscure the context. GPT-4 + PaperQA is GPT-4 prompted to either answer or use PaperQA as an oracle to help answer the question. {PaperQA/AutoGPT} + Post reasoning involves feeding the output of PaperQA or AutoGPT to GPT-4, which is prompted to answer the question and use the output from the other systems if deemed useful. These two are similar to the a priori and a posteriori reasoning in Ren et al.<ref type="bibr" coords="9,158.64,148.80,16.60,8.64" target="#b58">[59]</ref> respectively.</figDesc><table coords="9,155.59,173.26,286.13,82.56"><row><cell>Method</cell><cell cols="3">MedQA-USMLE BioASQ PubMedQA blind</cell></row><row><cell>GPT-4</cell><cell>67.0</cell><cell>84.0</cell><cell>57.9</cell></row><row><cell>GPT-4 + PaperQA</cell><cell>63.0</cell><cell>87.0</cell><cell>86.3</cell></row><row><cell>AutoGPT</cell><cell>54.0</cell><cell>73.0</cell><cell>56.8</cell></row><row><cell>AutoGPT + Post reasoning</cell><cell>56.0</cell><cell>75.0</cell><cell>61.3</cell></row><row><cell>PaperQA</cell><cell>68.0</cell><cell>89.0</cell><cell>86.3</cell></row><row><cell>PaperQA + Post reasoning</cell><cell>69.0</cell><cell>91.0</cell><cell>85.0</cell></row></table></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_5" coords="18,295.59,187.03,205.92,151.24"><head>Table 6 :</head><label>6</label><figDesc>Retrieval AUC (Abstract). We evaluate keyword generation and search between two LLMs and three search engines. The metric displayed is the normalized area under the curve from Figure2on the left.</figDesc><table coords="18,339.84,255.71,115.18,82.56"><row><cell>Search</cell><cell>LLM</cell><cell>Found</cell></row><row><cell>CORE</cell><cell>Claude-2 GPT-4</cell><cell>0.13 0.13</cell></row><row><cell>Semantic</cell><cell>Claude-2 GPT-4</cell><cell>0.64 0.72</cell></row><row><cell>Google</cell><cell>Claude-2 GPT-4</cell><cell>0.68 0.76</cell></row></table></figure>
<figure xmlns="http://www.tei-c.org/ns/1.0" type="table" xml:id="tab_8" coords="19,108.00,533.59,396.00,19.99"><head>Table 8 :</head><label>8</label><figDesc>The quality of PaperQA-discovered context. We compare providing the ground truth context in PubMedQA to the answer generated by PaperQA.</figDesc><table/></figure>
			<note xmlns="http://www.tei-c.org/ns/1.0" place="foot" n="1" xml:id="foot_0" coords="4,124.14,713.15,59.06,7.77"><p>https://arxiv.org/</p></note>
			<note xmlns="http://www.tei-c.org/ns/1.0" place="foot" n="2" xml:id="foot_1" coords="4,124.14,724.02,119.43,7.77"><p>https://pubmed.ncbi.nlm.nih.gov/</p></note>
			<note xmlns="http://www.tei-c.org/ns/1.0" place="foot" xml:id="foot_2" coords="6,108.00,712.03,396.00,9.03;6,108.00,723.38,392.42,8.64"><p>Scientific Question Answering First, we compare PaperQA on LitQA with two pre-trained LLMs, AutoGPT and several commercially available tools for scientific research -Elicit, Scite</p></note>
			<note xmlns="http://www.tei-c.org/ns/1.0" place="foot" n="3" xml:id="foot_3" coords="8,124.14,714.06,379.86,7.77;8,108.00,724.02,163.47,7.77"><p>The final revised dataset had fewer questions because some had multiple potential answers, so there is small discrepancy on the questions used here.</p></note>
		</body>
		<back>

			<div type="acknowledgement">
<div><head coords="10,108.25,297.56,91.82,8.64">ACKNOWLEDGMENTS</head><p coords="10,108.00,316.87,396.00,8.64;10,108.00,327.82,396.00,8.64;10,108.00,338.78,101.27,8.64">The authors thank <rs type="person">Mitchell Zheng</rs> at the <rs type="affiliation">University of Melbourne</rs> for contributing questions to the LitQA dataset. We also thank <rs type="person">Matthew Rubashkin</rs> for significant contribution to the results and engineering of this paper.</p></div>
<div><head coords="10,108.25,362.77,132.97,8.64">REPRODUCIBILITY STATEMENT</head><p coords="10,108.00,382.07,396.00,8.64;10,108.00,393.03,396.00,8.64;10,108.00,403.99,396.00,8.64;10,108.00,414.95,234.50,8.64">Discussions on the inherent limitations and challenges faced, along with the mitigations applied to maintain the robustness and reliability of the models, are available in section 6. For comprehensive understanding and replicability of our approach, we recommend a thorough review of the mentioned section, coupled with the supplemental materials provided.</p></div>
<div><head coords="10,108.25,438.93,85.36,8.64">ETHICS STATEMENT</head><p coords="10,108.00,458.24,396.00,8.64;10,108.00,469.20,219.80,8.64">Dual-use (applying technology for both beneficial and detrimental purposes) is an ongoing concern as more powerful models are developed Urbina et al. [77]. We performed rigorous red-teaming questions and did not observe risks for harm that are significantly elevated compared to direct use of the language models used for summarization. Similarly, the LitQA dataset and responses pose no risk for harm.</p></div>
			</div>			<div type="annex">
<div xmlns="http://www.tei-c.org/ns/1.0"><p coords="16,108.00,171.33,396.00,8.64;16,108.00,182.29,214.79,8.64">The underlying model versions used are GPT-3.5-turbo-0613 and GPT-4-0613. We used LangChain v0.0.303 and OpenAI-python v0.28.1.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,108.25,213.75,99.26,8.64">A.2 SYSTEM PROMPT</head><p coords="16,108.00,236.85,396.00,8.64">The system prompt for the LLMs (ask LLM, summary LLM, and answer LLM) is given below:</p><p coords="16,114.52,259.33,368.22,4.91;16,114.52,267.30,322.20,4.91">Answer in an direct and concise tone, I am in a hurry. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,108.00,295.58,135.59,8.64">The system prompt of the agent is</head><p coords="16,114.52,324.03,129.71,4.91">You are a helpful AI assistant. gather evidence description:</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,108.25,366.81,115.98,8.64">A.3 TOOL DESCRIPTIONS</head><p coords="16,114.52,499.01,372.41,4.91;16,114.52,506.98,54.39,4.91">Give a specific question to get evidence for it. This will increase evidence and relevant paper counts.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,108.00,535.27,128.08,8.64">generate answer description:</head><p coords="16,114.52,563.72,372.41,4.91;16,114.52,571.69,359.85,4.91;16,114.52,579.66,25.11,4.91">Ask a model to propose an answer using evidence from papers. The input is the question to be answered. The tool may fail, indicating that better or different evidence should be found.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,108.25,622.44,107.63,8.64">A.4 ASK LLM PROMPT</head><p coords="16,108.00,645.54,272.37,8.64">To capture latent knowledge in LLMs, we use the following prompt:</p><p coords="16,114.52,673.99,288.72,4.91;16,114.52,681.96,364.04,4.91;16,114.52,689.93,368.22,4.91;16,114.52,697.90,192.48,4.91">We are collecting background information for the question/task below. Provide a brief summary of information you know (about 50 words) that could help answer the question -do not answer it directly and ignore formatting instructions. It is ok to not answer, if there is nothing to contribute.</p></div>
<div xmlns="http://www.tei-c.org/ns/1.0"><head coords="16,114.52,713.84,75.32,4.91">Question: question</head></div>			</div>
			<div type="references">

				<listBibl>

<biblStruct coords="10,129.58,549.16,373.93,8.64;10,129.58,559.83,364.79,8.93;10,129.58,571.08,198.39,8.64" xml:id="b0">
	<monogr>
		<title level="m" type="main">Dimitrije curcic</title>
		<author>
			<persName coords=""><forename type="first">Dimitrije</forename><surname>Curcic</surname></persName>
		</author>
		<ptr target="https://wordsrated.com/number-of-academic-papers"/>
		<imprint>
			<date type="published" when="2023-06">Jun 2023</date>
		</imprint>
	</monogr>
	<note>published-per-year/#: ∼ :text=As%20of%202022%2C%20over%205.14,5. 03%20million%20papers%20were%20published</note>
</biblStruct>

<biblStruct coords="10,129.58,590.58,374.42,8.64;10,129.58,601.36,246.38,8.82" xml:id="b1">
	<analytic>
		<title level="a" type="main">Over-optimization of academic publishing metrics: observing goodhart's law in action</title>
		<author>
			<persName coords=""><forename type="first">Michael</forename><surname>Fire</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Carlos</forename><surname>Guestrin</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">GigaScience</title>
		<imprint>
			<biblScope unit="volume">8</biblScope>
			<biblScope unit="issue">6</biblScope>
			<biblScope unit="page">53</biblScope>
			<date type="published" when="2019">2019</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="10,129.58,621.04,374.42,8.64;10,129.58,632.00,374.42,8.64;10,129.58,642.78,180.65,8.82" xml:id="b2">
	<analytic>
		<title level="a" type="main">Science of science</title>
		<author>
			<persName coords=""><forename type="first">Santo</forename><surname>Fortunato</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Carl</forename><forename type="middle">T</forename><surname>Bergstrom</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Katy</forename><surname>Börner</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">James</forename><forename type="middle">A</forename><surname>Evans</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dirk</forename><surname>Helbing</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Staša</forename><surname>Milojević</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Filippo</forename><surname>Alexander M Petersen</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Roberta</forename><surname>Radicchi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Brian</forename><surname>Sinatra</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Uzzi</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Science</title>
		<imprint>
			<biblScope unit="volume">359</biblScope>
			<biblScope unit="issue">6379</biblScope>
			<biblScope unit="page">185</biblScope>
			<date type="published" when="2018">2018</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="10,129.58,662.28,374.42,8.82;10,129.58,673.42,66.69,8.64" xml:id="b3">
	<analytic>
		<title level="a" type="main">Prematurity and uniqueness in scientific discovery</title>
		<author>
			<persName coords=""><forename type="first">S</forename><surname>Gunther</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Stent</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Scientific American</title>
		<imprint>
			<biblScope unit="volume">227</biblScope>
			<biblScope unit="issue">6</biblScope>
			<biblScope unit="page" from="84" to="93"/>
			<date type="published" when="1972">1972</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="10,129.58,692.74,374.43,8.82;10,129.58,703.88,47.32,8.64" xml:id="b4">
	<monogr>
		<title level="m" type="main">Premature discovery or delayed recognition-why. Current contents</title>
		<author>
			<persName coords=""><forename type="first">Eugene</forename><surname>Garfield</surname></persName>
		</author>
		<imprint>
			<date type="published" when="1980">1980</date>
			<biblScope unit="page" from="5" to="10"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="10,129.58,723.38,267.30,8.64" xml:id="b5">
	<monogr>
		<ptr target="https://scholar.google.com/"/>
		<title level="m">Google Scholar. Google scholar</title>
		<imprint/>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,85.34,374.42,8.64;11,129.58,96.30,374.42,8.64;11,129.58,107.08,328.07,8.82" xml:id="b6">
	<monogr>
		<title level="m" type="main">The semantic scholar open data platform</title>
		<author>
			<persName coords=""><forename type="first">Rodney</forename><surname>Kinney</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Chloe</forename><surname>Anastasiades</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Russell</forename><surname>Authur</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Iz</forename><surname>Beltagy</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jonathan</forename><surname>Bragg</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alexandra</forename><surname>Buraczynski</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Isabel</forename><surname>Cachola</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Stefan</forename><surname>Candra</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yoganand</forename><surname>Chandrasekhar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Arman</forename><surname>Cohan</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2301.10140</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="11,129.58,127.78,374.42,8.64;11,129.58,138.56,374.42,8.82;11,129.58,149.52,100.17,8.82" xml:id="b7">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Arman</forename><surname>Cohan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sergey</forename><surname>Feldman</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Iz</forename><surname>Beltagy</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Doug</forename><surname>Downey</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Daniel</forename><forename type="middle">S</forename><surname>Weld</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2004.07180</idno>
		<title level="m">Specter: Document-level representation learning using citation-informed transformers</title>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="11,129.58,170.22,374.42,8.64;11,129.58,181.00,374.42,8.82;11,129.58,191.96,374.42,8.59;11,129.58,202.92,374.42,8.82;11,129.58,214.06,162.67,8.64" xml:id="b8">
	<analytic>
		<title level="a" type="main">SciBERT: A pretrained language model for scientific text</title>
		<author>
			<persName coords=""><forename type="first">Iz</forename><surname>Beltagy</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kyle</forename><surname>Lo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Arman</forename><surname>Cohan</surname></persName>
		</author>
		<ptr target="https://aclanthology.org/D19-1371"/>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
		<meeting>the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)<address><addrLine>Hong Kong, China</addrLine></address></meeting>
		<imprint>
			<publisher>Association for Computational Linguistics</publisher>
			<date type="published" when="2019-11">November 2019</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,234.59,374.42,8.64;11,129.58,245.54,148.78,8.64" xml:id="b9">
	<monogr>
		<title level="m" type="main">Enriching word vectors with subword information</title>
		<author>
			<persName coords=""><forename type="first">Piotr</forename><surname>Bojanowski</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Edouard</forename><surname>Grave</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Armand</forename><surname>Joulin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tomas</forename><surname>Mikolov</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2017">2017</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,266.07,374.42,8.64;11,129.58,276.85,374.42,8.82;11,129.58,287.99,90.77,8.64" xml:id="b10">
	<monogr>
		<title level="m" type="main">Scirepeval: A multi-format benchmark for scientific document representations</title>
		<author>
			<persName coords=""><forename type="first">Amanpreet</forename><surname>Singh</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mike D'</forename><surname>Arcy</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Arman</forename><surname>Cohan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Doug</forename><surname>Downey</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sergey</forename><surname>Feldman</surname></persName>
		</author>
		<idno>ArXiv, abs/2211.13308</idno>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,308.33,374.42,8.82;11,129.58,319.47,52.30,8.64" xml:id="b11">
	<analytic>
		<title/>
		<author>
			<persName coords=""><forename type="first">Paul</forename><surname>Resnick</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hal</forename><forename type="middle">R</forename><surname>Varian</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Communications of the ACM</title>
		<imprint>
			<biblScope unit="volume">40</biblScope>
			<biblScope unit="issue">3</biblScope>
			<biblScope unit="page" from="56" to="58"/>
			<date type="published" when="1997">1997</date>
		</imprint>
	</monogr>
	<note>Recommender systems</note>
</biblStruct>

<biblStruct coords="11,129.58,340.00,374.42,8.64;11,129.58,350.78,374.42,8.82;11,129.58,361.74,198.03,8.82" xml:id="b12">
	<monogr>
		<title level="m" type="main">Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions</title>
		<author>
			<persName coords=""><forename type="first">Gediminas</forename><surname>Adomavicius</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alexander</forename><surname>Tuzhilin</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2005">2005</date>
			<biblScope unit="volume">17</biblScope>
			<biblScope unit="page" from="734" to="749"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,382.44,374.42,8.64;11,129.58,393.40,374.42,8.64;11,129.58,404.18,243.15,8.82" xml:id="b13">
	<analytic>
		<title level="a" type="main">Large language models encode clinical knowledge</title>
		<author>
			<persName coords=""><forename type="first">Karan</forename><surname>Singhal</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Shekoofeh</forename><surname>Azizi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tao</forename><surname>Tu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sara</forename><surname>Mahdavi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jason</forename><surname>Wei</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hyung</forename><forename type="middle">Won</forename><surname>Chung</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nathan</forename><surname>Scales</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ajay</forename><surname>Tanwani</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Heather</forename><surname>Cole-Lewis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Stephen</forename><surname>Pfohl</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Nature</title>
		<imprint>
			<biblScope unit="page" from="1" to="9"/>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,424.88,374.42,8.64;11,129.58,435.84,374.42,8.64;11,129.58,446.80,22.42,8.64" xml:id="b14">
	<monogr>
		<title level="m" type="main">Algorithmic ghost in the research shell: Large language models and academic knowledge creation in management research</title>
		<author>
			<persName coords=""><forename type="first">Nigel</forename><surname>Williams</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Stanislav</forename><surname>Ivanov</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dimitrios</forename><surname>Buhalis</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,467.33,374.42,8.64;11,129.58,478.28,374.42,8.64;11,129.58,489.24,374.42,8.64;11,129.58,500.02,136.89,8.82" xml:id="b15">
	<monogr>
		<title level="m" type="main">Almanac: Retrieval-augmented language models for clinical medicine</title>
		<author>
			<persName coords=""><forename type="first">W</forename><surname>Hiesinger</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">C</forename><surname>Zakka</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Akash</forename><surname>Chaurasia</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">R</forename><surname>Shad</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alex</forename><forename type="middle">R</forename><surname>Dalal</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jennifer</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Michael</forename><surname>Moor</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kevin</forename><surname>Alexander</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Euan</forename><forename type="middle">A</forename><surname>Ashley</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jack</forename><surname>Boyd</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kathleen</forename><surname>Boyd</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Karen</forename><surname>Hirsch</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">C</forename><surname>Langlotz</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Joanna</forename><surname>Nelson</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note>Research Square</note>
</biblStruct>

<biblStruct coords="11,129.58,520.73,374.42,8.64;11,129.58,531.51,313.35,8.82" xml:id="b16">
	<analytic>
		<title level="a" type="main">The imperative for regulatory oversight of large language models (or generative ai) in healthcare</title>
		<author>
			<persName coords=""><forename type="first">Bertalan</forename><surname>Meskó</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Eric</forename><forename type="middle">J</forename><surname>Topol</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">NPJ Digital Medicine</title>
		<imprint>
			<biblScope unit="volume">6</biblScope>
			<biblScope unit="issue">1</biblScope>
			<biblScope unit="page">120</biblScope>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,552.03,374.42,8.82;11,129.58,563.17,42.34,8.64" xml:id="b17">
	<analytic>
		<title level="a" type="main">Take the time and effort to correct misinformation</title>
		<author>
			<persName coords=""><forename type="first">Phil</forename><surname>Williamson</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Nature</title>
		<imprint>
			<biblScope unit="volume">540</biblScope>
			<biblScope unit="issue">7632</biblScope>
			<biblScope unit="page" from="171" to="171"/>
			<date type="published" when="2016">2016</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,583.70,374.42,8.64;11,129.58,594.65,374.42,8.64;11,129.58,605.43,374.42,8.82;11,129.58,616.39,167.80,8.82" xml:id="b18">
	<analytic>
		<title level="a" type="main">Retrievalaugmented generation for knowledge-intensive nlp tasks</title>
		<author>
			<persName coords=""><forename type="first">Patrick</forename><surname>Lewis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ethan</forename><surname>Perez</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Aleksandra</forename><surname>Piktus</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Fabio</forename><surname>Petroni</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Vladimir</forename><surname>Karpukhin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Naman</forename><surname>Goyal</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Heinrich</forename><surname>Küttler</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mike</forename><surname>Lewis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Wen-Tau</forename><surname>Yih</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tim</forename><surname>Rocktäschel</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Advances in Neural Information Processing Systems</title>
		<imprint>
			<biblScope unit="volume">33</biblScope>
			<biblScope unit="page" from="9459" to="9474"/>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="11,129.58,637.10,374.42,8.64;11,129.58,647.88,338.88,8.82" xml:id="b19">
	<monogr>
		<title level="m" type="main">Retrieval augmentation reduces hallucination in conversation</title>
		<author>
			<persName coords=""><forename type="first">Kurt</forename><surname>Shuster</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Spencer</forename><surname>Poff</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Moya</forename><surname>Chen</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Douwe</forename><surname>Kiela</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jason</forename><surname>Weston</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2104.07567</idno>
		<imprint>
			<date type="published" when="2021">2021</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="11,129.58,668.58,374.42,8.64;11,129.58,679.36,374.42,8.82;11,129.58,690.32,374.42,8.59;11,129.58,701.28,374.42,8.82;11,129.58,712.42,373.93,8.64;11,129.58,723.38,188.67,8.64" xml:id="b20">
	<analytic>
		<title level="a" type="main">PubMedQA: A dataset for biomedical research question answering</title>
		<author>
			<persName coords=""><forename type="first">Qiao</forename><surname>Jin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Bhuwan</forename><surname>Dhingra</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zhengping</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">William</forename><surname>Cohen</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xinghua</forename><surname>Lu</surname></persName>
		</author>
		<idno type="DOI">10.18653/v1/D19-1259</idno>
		<ptr target="https://aclanthology.org/D19-1259"/>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
		<meeting>the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)<address><addrLine>Hong Kong, China</addrLine></address></meeting>
		<imprint>
			<publisher>Association for Computational Linguistics</publisher>
			<date type="published" when="2019-11">November 2019</date>
			<biblScope unit="page" from="2567" to="2577"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,85.34,374.42,8.64;12,129.58,96.12,374.42,8.82;12,129.58,107.08,117.99,8.82" xml:id="b21">
	<analytic>
		<title level="a" type="main">Attention is all you need</title>
		<author>
			<persName coords=""><forename type="first">Ashish</forename><surname>Vaswani</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Noam</forename><surname>Shazeer</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Niki</forename><surname>Parmar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jakob</forename><surname>Uszkoreit</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Llion</forename><surname>Jones</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Aidan</forename><forename type="middle">N</forename><surname>Gomez</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Łukasz</forename><surname>Kaiser</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Illia</forename><surname>Polosukhin</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Advances in neural information processing systems</title>
		<imprint>
			<biblScope unit="volume">30</biblScope>
			<date type="published" when="2017">2017</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,125.43,374.42,8.64;12,129.58,136.39,374.42,8.64;12,129.58,147.17,374.42,8.82;12,129.58,158.31,22.42,8.64" xml:id="b22">
	<analytic>
		<title level="a" type="main">Language models are few-shot learners</title>
		<author>
			<persName coords=""><forename type="first">Tom</forename><surname>Brown</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Benjamin</forename><surname>Mann</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nick</forename><surname>Ryder</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Melanie</forename><surname>Subbiah</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jared</forename><forename type="middle">D</forename><surname>Kaplan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Prafulla</forename><surname>Dhariwal</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Arvind</forename><surname>Neelakantan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Pranav</forename><surname>Shyam</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Girish</forename><surname>Sastry</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Amanda</forename><surname>Askell</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="m">Advances in neural information processing systems</title>
		<imprint>
			<date type="published" when="2020">2020</date>
			<biblScope unit="volume">33</biblScope>
			<biblScope unit="page" from="1877" to="1901"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,176.49,374.42,8.64;12,129.58,187.45,374.42,8.64;12,129.58,198.23,344.15,8.82" xml:id="b23">
	<monogr>
		<title level="m" type="main">On the opportunities and risks of foundation models</title>
		<author>
			<persName coords=""><forename type="first">Rishi</forename><surname>Bommasani</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Drew</forename><forename type="middle">A</forename><surname>Hudson</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ehsan</forename><surname>Adeli</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Russ</forename><surname>Altman</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Simran</forename><surname>Arora</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Sydney Von Arx</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jeannette</forename><surname>Michael S Bernstein</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Antoine</forename><surname>Bohg</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Emma</forename><surname>Bosselut</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Brunskill</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2108.07258</idno>
		<imprint>
			<date type="published" when="2021">2021</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="12,129.58,216.58,374.42,8.64;12,129.58,227.54,374.42,8.64;12,129.58,238.32,334.35,8.82" xml:id="b24">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Aakanksha</forename><surname>Chowdhery</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sharan</forename><surname>Narang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jacob</forename><surname>Devlin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Maarten</forename><surname>Bosma</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Gaurav</forename><surname>Mishra</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Adam</forename><surname>Roberts</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Paul</forename><surname>Barham</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hyung</forename><forename type="middle">Won</forename><surname>Chung</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Charles</forename><surname>Sutton</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sebastian</forename><surname>Gehrmann</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2204.02311</idno>
		<title level="m">Scaling language modeling with pathways</title>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="12,129.58,256.68,374.42,8.64;12,129.58,267.64,374.42,8.64;12,129.58,278.42,277.46,8.82" xml:id="b25">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Danny</forename><surname>Driess</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Fei</forename><surname>Xia</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">S</forename><forename type="middle">M</forename><surname>Mehdi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Corey</forename><surname>Sajjadi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Aakanksha</forename><surname>Lynch</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Brian</forename><surname>Chowdhery</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ayzaan</forename><surname>Ichter</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jonathan</forename><surname>Wahid</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Quan</forename><surname>Tompson</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tianhe</forename><surname>Vuong</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Yu</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2303.03378</idno>
		<title level="m">Palm-e: An embodied multimodal language model</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="12,129.58,296.77,153.54,8.64" xml:id="b26">
	<analytic>
		<title/>
	</analytic>
	<monogr>
		<title level="j">OpenAI. Gpt-4 technical report</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,314.95,374.42,8.64;12,129.58,325.73,374.42,8.82;12,129.58,336.69,374.42,8.82;12,129.58,347.82,374.42,8.64;12,129.58,358.78,92.09,8.64" xml:id="b27">
	<analytic>
		<title level="a" type="main">SynKB: Semantic search for synthetic procedures</title>
		<author>
			<persName coords=""><forename type="first">Fan</forename><surname>Bai</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alan</forename><surname>Ritter</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Peter</forename><surname>Madrid</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dayne</forename><surname>Freitag</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">John</forename><surname>Niekrasz</surname></persName>
		</author>
		<ptr target="https://aclanthology.org/2022.emnlp-demos.31"/>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
		<meeting>the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations<address><addrLine>Abu Dhabi, UAE</addrLine></address></meeting>
		<imprint>
			<publisher>Association for Computational Linguistics</publisher>
			<date type="published" when="2022-12">December 2022</date>
			<biblScope unit="page" from="311" to="318"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,376.96,374.42,8.64;12,129.58,387.74,374.42,8.82;12,129.58,398.70,374.42,8.59;12,129.58,409.84,374.42,8.64;12,129.58,420.80,339.97,8.64" xml:id="b28">
	<analytic>
		<title level="a" type="main">Process-level representation of scientific protocols with interactive annotation</title>
		<author>
			<persName coords=""><forename type="first">Ronen</forename><surname>Tamari</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Fan</forename><surname>Bai</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alan</forename><surname>Ritter</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Gabriel</forename><surname>Stanovsky</surname></persName>
		</author>
		<idno type="DOI">10.18653/v1/2021.eacl-main.187</idno>
		<ptr target="https://aclanthology.org/2021.eacl-main.187"/>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
		<meeting>the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</meeting>
		<imprint>
			<publisher>Association for Computational Linguistics</publisher>
			<date type="published" when="2021-04">April 2021</date>
			<biblScope unit="page" from="2190" to="2202"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,438.97,374.42,8.64;12,129.58,449.93,374.42,8.64;12,129.58,460.71,374.42,8.82;12,129.58,471.67,115.74,8.82" xml:id="b29">
	<analytic>
		<title level="a" type="main">Domain-specific language model pretraining for biomedical natural language processing</title>
		<author>
			<persName coords=""><forename type="first">Yu</forename><surname>Gu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Robert</forename><surname>Tinn</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hao</forename><surname>Cheng</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Michael</forename><surname>Lucas</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Naoto</forename><surname>Usuyama</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xiaodong</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tristan</forename><surname>Naumann</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jianfeng</forename><surname>Gao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hoifung</forename><surname>Poon</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">ACM Transactions on Computing for Healthcare (HEALTH)</title>
		<imprint>
			<biblScope unit="volume">3</biblScope>
			<biblScope unit="issue">1</biblScope>
			<biblScope unit="page" from="1" to="23"/>
			<date type="published" when="2021">2021</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,490.03,374.42,8.64;12,129.58,500.81,374.42,8.82;12,129.58,511.77,374.42,8.82;12,129.58,522.90,374.42,8.64;12,129.58,533.86,185.09,8.64" xml:id="b30">
	<analytic>
		<title level="a" type="main">Pretrained language models for biomedical and clinical tasks: Understanding and extending the state-of-the-art</title>
		<author>
			<persName coords=""><forename type="first">Patrick</forename><surname>Lewis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Myle</forename><surname>Ott</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jingfei</forename><surname>Du</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Veselin</forename><surname>Stoyanov</surname></persName>
		</author>
		<idno type="DOI">10.18653/v1/2020.clinicalnlp-1.17</idno>
		<ptr target="https://aclanthology.org/2020.clinicalnlp-1.17"/>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 3rd Clinical Natural Language Processing Workshop</title>
		<meeting>the 3rd Clinical Natural Language Processing Workshop</meeting>
		<imprint>
			<publisher>Association for Computational Linguistics</publisher>
			<date type="published" when="2020-11">November 2020</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,552.04,374.42,8.64;12,129.58,562.82,374.42,8.82;12,129.58,573.78,142.52,8.82" xml:id="b31">
	<analytic>
		<title level="a" type="main">Biogpt: generative pre-trained transformer for biomedical text generation and mining</title>
		<author>
			<persName coords=""><forename type="first">Renqian</forename><surname>Luo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Liai</forename><surname>Sun</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yingce</forename><surname>Xia</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tao</forename><surname>Qin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sheng</forename><surname>Zhang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hoifung</forename><surname>Poon</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tie-Yan</forename><surname>Liu</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Briefings in Bioinformatics</title>
		<imprint>
			<biblScope unit="volume">23</biblScope>
			<biblScope unit="issue">6</biblScope>
			<biblScope unit="page">2022</biblScope>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,592.13,374.42,8.64;12,129.58,603.09,374.42,8.64;12,129.58,613.87,212.38,8.82" xml:id="b32">
	<analytic>
		<title level="a" type="main">Biobert: a pre-trained biomedical language representation model for biomedical text mining</title>
		<author>
			<persName coords=""><forename type="first">Jinhyuk</forename><surname>Lee</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Wonjin</forename><surname>Yoon</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sungdong</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Donghyeon</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sunkyu</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Chan</forename><surname>Ho</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">So</forename></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jaewoo</forename><surname>Kang</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Bioinformatics</title>
		<imprint>
			<biblScope unit="volume">36</biblScope>
			<biblScope unit="issue">4</biblScope>
			<biblScope unit="page" from="1234" to="1240"/>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="12,129.58,632.23,374.42,8.64;12,129.58,643.01,374.42,8.82;12,129.58,653.97,134.95,8.82" xml:id="b33">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Hoo-Chang</forename><surname>Shin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yang</forename><surname>Zhang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Evelina</forename><surname>Bakhturina</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Raul</forename><surname>Puri</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mostofa</forename><surname>Patwary</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mohammad</forename><surname>Shoeybi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Raghav</forename><surname>Mani</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Biomegatron</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2010.06060</idno>
		<title level="m">Larger biomedical domain language model</title>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="12,129.58,672.32,374.42,8.64;12,129.58,683.28,374.42,8.64;12,129.58,694.06,236.48,8.82" xml:id="b34">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Ross</forename><surname>Taylor</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Marcin</forename><surname>Kardas</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Guillem</forename><surname>Cucurull</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Thomas</forename><surname>Scialom</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Anthony</forename><surname>Hartshorn</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Elvis</forename><surname>Saravia</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Andrew</forename><surname>Poulton</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Viktor</forename><surname>Kerkez</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Robert</forename><surname>Stojnic</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2211.09085</idno>
		<title level="m">Galactica: A large language model for science</title>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="12,129.58,712.42,374.42,8.64;12,129.58,723.20,361.70,8.82" xml:id="b35">
	<monogr>
		<title level="m" type="main">Bayesian optimization of catalysts with in-context learning</title>
		<author>
			<persName coords=""><forename type="first">Shane</forename><forename type="middle">S</forename><surname>Mayk Caldas Ramos</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Marc</forename><forename type="middle">D</forename><surname>Michtavy</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Andrew</forename><forename type="middle">D</forename><surname>Porosoff</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>White</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2304.05341</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,85.34,374.42,8.64;13,129.58,96.30,374.42,8.64;13,129.58,107.26,216.95,8.64" xml:id="b36">
	<monogr>
		<title level="m" type="main">Building open-ended embodied agents with internet-scale knowledge</title>
		<author>
			<persName coords=""><forename type="first">Linxi</forename><surname>Fan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Guanzhi</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yunfan</forename><surname>Jiang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ajay</forename><surname>Mandlekar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuncong</forename><surname>Yang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Haoyi</forename><surname>Zhu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Andrew</forename><surname>Tang</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>De-An</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuke</forename><surname>Huang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Anima</forename><surname>Zhu</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Anandkumar</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Minedojo</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="13,129.58,127.87,374.42,8.64;13,129.58,138.83,334.49,8.64" xml:id="b37">
	<monogr>
		<title level="m" type="main">Reflexion: Language agents with verbal reinforcement learning</title>
		<author>
			<persName coords=""><forename type="first">Noah</forename><surname>Shinn</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Federico</forename><surname>Cassano</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Beck</forename><surname>Labash</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ashwin</forename><surname>Gopinath</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Karthik</forename><surname>Narasimhan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Shunyu</forename><surname>Yao</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="13,129.58,159.45,374.42,8.64;13,129.58,170.41,374.42,8.64;13,129.58,181.19,185.03,8.82" xml:id="b38">
	<monogr>
		<title level="m" type="main">Self-instruct: Aligning language model with self generated instructions</title>
		<author>
			<persName coords=""><forename type="first">Yizhong</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yeganeh</forename><surname>Kordi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Swaroop</forename><surname>Mishra</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alisa</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Noah</forename><forename type="middle">A</forename><surname>Smith</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Daniel</forename><surname>Khashabi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hannaneh</forename><surname>Hajishirzi</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2212.10560</idno>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,201.99,374.42,8.64;13,129.58,212.95,374.42,8.64;13,129.58,223.73,308.78,8.82" xml:id="b39">
	<analytic>
		<title level="a" type="main">Chain-of-thought prompting elicits reasoning in large language models</title>
		<author>
			<persName coords=""><forename type="first">Jason</forename><surname>Wei</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xuezhi</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dale</forename><surname>Schuurmans</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Maarten</forename><surname>Bosma</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Fei</forename><surname>Xia</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ed</forename><surname>Chi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">V</forename><surname>Quoc</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Denny</forename><surname>Le</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Zhou</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Advances in Neural Information Processing Systems</title>
		<imprint>
			<biblScope unit="volume">35</biblScope>
			<biblScope unit="page" from="24824" to="24837"/>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="13,129.58,244.52,374.42,8.64;13,129.58,255.30,374.42,8.82;13,129.58,266.26,134.95,8.82" xml:id="b40">
	<monogr>
		<title level="m" type="main">Tree of thoughts: Deliberate problem solving with large language models</title>
		<author>
			<persName coords=""><forename type="first">Shunyu</forename><surname>Yao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dian</forename><surname>Yu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jeffrey</forename><surname>Zhao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Izhak</forename><surname>Shafran</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Thomas</forename><forename type="middle">L</forename><surname>Griffiths</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuan</forename><surname>Cao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Karthik</forename><surname>Narasimhan</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2305.10601</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,287.06,374.42,8.64;13,129.58,298.02,374.42,8.64;13,129.58,308.98,374.42,8.64;13,129.58,319.76,254.74,8.82" xml:id="b41">
	<monogr>
		<title level="m" type="main">Mrkl systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning</title>
		<author>
			<persName coords=""><forename type="first">Ehud</forename><surname>Karpas</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Omri</forename><surname>Abend</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yonatan</forename><surname>Belinkov</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Barak</forename><surname>Lenz</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Opher</forename><surname>Lieber</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nir</forename><surname>Ratner</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yoav</forename><surname>Shoham</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hofit</forename><surname>Bata</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yoav</forename><surname>Levine</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kevin</forename><surname>Leyton-Brown</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2205.00445</idno>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,340.55,374.42,8.64;13,129.58,351.51,374.42,8.64;13,129.58,362.29,257.66,8.82" xml:id="b42">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Timo</forename><surname>Schick</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jane</forename><surname>Dwivedi-Yu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Roberto</forename><surname>Dessì</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Roberta</forename><surname>Raileanu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Maria</forename><surname>Lomeli</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Luke</forename><surname>Zettlemoyer</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nicola</forename><surname>Cancedda</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Thomas</forename><surname>Scialom</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Toolformer</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2302.04761</idno>
		<title level="m">Language models can teach themselves to use tools</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,383.09,374.42,8.64;13,129.58,393.87,374.42,8.82;13,129.58,404.83,100.17,8.82" xml:id="b43">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Yongliang</forename><surname>Shen</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kaitao</forename><surname>Song</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xu</forename><surname>Tan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dongsheng</forename><surname>Li</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Weiming</forename><surname>Lu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yueting</forename><surname>Zhuang</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Hugginggpt</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2303.17580</idno>
		<title level="m">Solving ai tasks with chatgpt and its friends in huggingface</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,425.63,374.42,8.64;13,129.58,436.41,374.42,8.82;13,129.58,447.36,100.17,8.82" xml:id="b44">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Shunyu</forename><surname>Yao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jeffrey</forename><surname>Zhao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dian</forename><surname>Yu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nan</forename><surname>Du</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Izhak</forename><surname>Shafran</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Karthik</forename><surname>Narasimhan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuan</forename><surname>Cao</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2210.03629</idno>
		<title level="m">React: Synergizing reasoning and acting in language models</title>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,468.16,374.42,8.64;13,129.58,479.12,374.42,8.64;13,129.58,489.90,296.54,8.82" xml:id="b45">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Zhengyuan</forename><surname>Yang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Linjie</forename><surname>Li</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jianfeng</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kevin</forename><surname>Lin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ehsan</forename><surname>Azarnasab</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Faisal</forename><surname>Ahmed</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zicheng</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ce</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Michael</forename><surname>Zeng</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Lijuan</forename><surname>Wang</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2303.11381</idno>
		<title level="m">Mm-react: Prompting chatgpt for multimodal reasoning and action</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,510.70,374.42,8.64;13,129.58,521.48,249.79,8.82" xml:id="b46">
	<monogr>
		<title level="m" type="main">Multi-agent collaboration: Harnessing the power of intelligent llm agents</title>
		<author>
			<persName coords=""><forename type="first">Yashar</forename><surname>Talebirad</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Amirhossein</forename><surname>Nadiri</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2306.03314</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,542.27,374.42,8.64;13,129.58,553.23,374.42,8.64;13,129.58,564.01,194.44,8.82" xml:id="b47">
	<monogr>
		<title level="m" type="main">Voyager: An open-ended embodied agent with large language models</title>
		<author>
			<persName coords=""><forename type="first">Guanzhi</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuqi</forename><surname>Xie</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yunfan</forename><surname>Jiang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ajay</forename><surname>Mandlekar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Chaowei</forename><surname>Xiao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuke</forename><surname>Zhu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Linxi</forename><surname>Fan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Anima</forename><surname>Anandkumar</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2305.16291</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,584.81,374.42,8.64;13,129.58,595.77,69.19,8.64" xml:id="b48">
	<monogr>
		<title level="m" type="main">Significant-gravitas. auto-gpt: An experimental open-source attempt to make gpt-4 fully autonomous</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="13,129.58,616.39,374.42,8.64;13,129.58,627.35,374.42,8.64;13,129.58,638.13,374.43,8.82;13,129.58,649.08,196.87,8.82" xml:id="b49">
	<analytic>
		<title level="a" type="main">Are you smarter than a sixth grader? textbook question answering for multimodal machine comprehension</title>
		<author>
			<persName coords=""><forename type="first">Aniruddha</forename><surname>Kembhavi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Minjoon</forename><surname>Seo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dustin</forename><surname>Schwenk</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jonghyun</forename><surname>Choi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ali</forename><surname>Farhadi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hannaneh</forename><surname>Hajishirzi</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the IEEE Conference on Computer Vision and Pattern recognition</title>
		<meeting>the IEEE Conference on Computer Vision and Pattern recognition</meeting>
		<imprint>
			<date type="published" when="2017">2017</date>
			<biblScope unit="page" from="4999" to="5007"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="13,129.58,669.88,374.42,8.64;13,129.58,680.66,374.42,8.82;13,129.58,691.62,100.17,8.82" xml:id="b50">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Dan</forename><surname>Hendrycks</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Collin</forename><surname>Burns</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Steven</forename><surname>Basart</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Andy</forename><surname>Zou</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mantas</forename><surname>Mazeika</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dawn</forename><surname>Song</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jacob</forename><surname>Steinhardt</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2009.03300</idno>
		<title level="m">Measuring massive multitask language understanding</title>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="13,129.58,712.42,374.42,8.64;13,129.58,723.20,364.11,8.82" xml:id="b51">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Mujeen</forename><surname>Sung</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jinhyuk</forename><surname>Lee</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sean</forename><surname>Yi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Minji</forename><surname>Jeon</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sungdong</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jaewoo</forename><surname>Kang</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2109.07154</idno>
		<title level="m">Can language models be biomedical knowledge bases? arXiv preprint</title>
		<imprint>
			<date type="published" when="2021">2021</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,85.34,374.42,8.64;14,129.58,96.30,374.42,8.64;14,129.58,107.26,161.47,8.64" xml:id="b52">
	<monogr>
		<title level="m" type="main">What indeed can gpt models do in chemistry? a comprehensive benchmark on eight tasks</title>
		<author>
			<persName coords=""><forename type="first">Taicheng</forename><surname>Guo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kehan</forename><surname>Guo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Bozhao</forename><surname>Nan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zhenwen</forename><surname>Liang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zhichun</forename><surname>Guo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">V</forename><surname>Nitesh</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Olaf</forename><surname>Chawla</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xiangliang</forename><surname>Wiest</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Zhang</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,125.68,374.42,8.64;14,129.58,136.64,374.42,8.64;14,129.58,147.60,266.78,8.64" xml:id="b53">
	<monogr>
		<title level="m" type="main">Moleculenet: A benchmark for molecular machine learning</title>
		<author>
			<persName coords=""><forename type="first">Zhenqin</forename><surname>Wu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Bharath</forename><surname>Ramsundar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Evan</forename><forename type="middle">N</forename><surname>Feinberg</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Joseph</forename><surname>Gomes</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Caleb</forename><surname>Geniesse</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Aneesh</forename><forename type="middle">S</forename><surname>Pappu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Karl</forename><surname>Leswing</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Vijay</forename><surname>Pande</surname></persName>
		</author>
		<ptr target="https://arxiv.org/abs/1703.00564"/>
		<imprint>
			<date type="published" when="2017">2017</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,166.03,374.42,8.64;14,129.58,176.81,339.80,8.82" xml:id="b54">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Sam</forename><surname>Andres M Bran</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Andrew</forename><forename type="middle">D</forename><surname>Cox</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Philippe</forename><surname>White</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Schwaller</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Chemcrow</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2304.05376</idno>
		<title level="m">Augmenting large-language models with chemistry tools</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,195.41,374.42,8.64;14,129.58,206.37,374.42,8.64;14,129.58,217.33,374.42,8.64;14,129.58,228.11,187.85,8.82" xml:id="b55">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Debadutta</forename><surname>Dash</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Rahul</forename><surname>Thapa</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Juan</forename><forename type="middle">M</forename><surname>Banda</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Akshay</forename><surname>Swaminathan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Morgan</forename><surname>Cheatham</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mehr</forename><surname>Kashyap</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nikesh</forename><surname>Kotecha</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jonathan</forename><forename type="middle">H</forename><surname>Chen</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Saurabh</forename><surname>Gombar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Lance</forename><surname>Downing</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2304.13714</idno>
		<title level="m">Evaluation of gpt-3.5 and gpt-4 for supporting real-world information needs in healthcare delivery</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,246.71,374.42,8.64;14,129.58,257.67,374.42,8.64;14,129.58,268.45,374.42,8.82;14,129.58,279.59,90.77,8.64" xml:id="b56">
	<monogr>
		<title level="m" type="main">Improving accuracy of gpt-3/4 results on biomedical data using a retrieval-augmented language model</title>
		<author>
			<persName coords=""><forename type="first">D</forename><surname>Soong</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">S</forename><surname>Sridhar</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Han</forename><surname>Si</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">J</forename><surname>Wagner</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ana</forename></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Caroline</forename><surname>Costa</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">S</forename></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Christina</forename><forename type="middle">Y</forename><surname>Yu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kubra</forename><surname>Karagoz</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Meijian</forename><surname>Guan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">K</forename><surname>Hisham</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Brandon</forename><surname>Hamadeh</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Higgs</surname></persName>
		</author>
		<idno>ArXiv, abs/2305.17116</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,298.02,374.42,8.64;14,129.58,308.98,374.42,8.64;14,129.58,319.76,263.24,8.82" xml:id="b57">
	<monogr>
		<title level="m" type="main">Demonstrate-search-predict: Composing retrieval and language models for knowledge-intensive nlp</title>
		<author>
			<persName coords=""><forename type="first">Omar</forename><surname>Khattab</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Keshav</forename><surname>Santhanam</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Lisa</forename><surname>Xiang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">David</forename><surname>Li</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Percy</forename><surname>Hall</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Christopher</forename><surname>Liang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Matei</forename><surname>Potts</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Zaharia</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2212.14024</idno>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,338.36,374.42,8.64;14,129.58,349.32,374.42,8.64;14,129.58,360.28,168.30,8.64" xml:id="b58">
	<monogr>
		<title level="m" type="main">Investigating the factual knowledge boundary of large language models with retrieval augmentation</title>
		<author>
			<persName coords=""><forename type="first">Ruiyang</forename><surname>Ren</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yuhao</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yingqi</forename><surname>Qu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Wayne</forename><forename type="middle">Xin</forename><surname>Zhao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jing</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hua</forename><surname>Hao Tian</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ji-Rong</forename><surname>Wu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Haifeng</forename><surname>Wen</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Wang</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,378.71,374.42,8.64;14,129.58,389.49,374.42,8.82;14,129.58,400.44,134.95,8.82" xml:id="b59">
	<monogr>
		<title level="m" type="main">Active retrieval augmented generation</title>
		<author>
			<persName coords=""><forename type="first">Zhengbao</forename><surname>Jiang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Frank</forename><forename type="middle">F</forename><surname>Xu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Luyu</forename><surname>Gao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zhiqing</forename><surname>Sun</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Qian</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jane</forename><surname>Dwivedi-Yu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yiming</forename><surname>Yang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jamie</forename><surname>Callan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Graham</forename><surname>Neubig</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2305.06983</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,419.05,374.42,8.64;14,129.58,429.83,297.09,8.82" xml:id="b60">
	<monogr>
		<title level="m" type="main">Leveraging passage retrieval with generative models for open domain question answering</title>
		<author>
			<persName coords=""><forename type="first">Gautier</forename><surname>Izacard</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Edouard</forename><surname>Grave</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2007.01282</idno>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,448.44,374.42,8.64;14,129.58,459.21,374.42,8.82;14,129.58,470.17,100.17,8.82" xml:id="b61">
	<monogr>
		<title level="m" type="main">Surfacebased retrieval reduces perplexity of retrieval-augmented language models</title>
		<author>
			<persName coords=""><forename type="first">Ehsan</forename><surname>Doostmohammadi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tobias</forename><surname>Norlund</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Marco</forename><surname>Kuhlmann</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Richard</forename><surname>Johansson</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2305.16243</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,488.78,374.42,8.64;14,129.58,499.56,374.42,8.82;14,129.58,510.70,22.42,8.64" xml:id="b62">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Jacob</forename><surname>Devlin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ming-Wei</forename><surname>Chang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kenton</forename><surname>Lee</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kristina</forename><surname>Toutanova</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Bert</surname></persName>
		</author>
		<idno type="arXiv">arXiv:1810.04805</idno>
		<title level="m">Pre-training of deep bidirectional transformers for language understanding</title>
		<imprint>
			<date type="published" when="2018">2018</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,529.12,374.42,8.64;14,129.58,540.08,374.42,8.64;14,129.58,550.86,159.58,8.82" xml:id="b63">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Weijia</forename><surname>Shi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sewon</forename><surname>Min</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Michihiro</forename><surname>Yasunaga</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Minjoon</forename><surname>Seo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Rich</forename><surname>James</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mike</forename><surname>Lewis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Luke</forename><surname>Zettlemoyer</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Wen-Tau</forename><surname>Yih</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2301.12652</idno>
		<title level="m">Replug: Retrieval-augmented black-box language models</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,569.47,374.42,8.64;14,129.58,580.25,284.16,8.82" xml:id="b64">
	<monogr>
		<title level="m" type="main">Realm: Retrievalaugmented language model pre-training</title>
		<author>
			<persName coords=""><forename type="first">Kelvin</forename><surname>Guu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Kenton</forename><surname>Lee</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Z</forename><surname>Tung</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Panupong</forename><surname>Pasupat</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ming-Wei</forename><surname>Chang</surname></persName>
		</author>
		<idno>ArXiv, abs/2002.08909</idno>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,598.85,374.42,8.64;14,129.58,609.81,374.42,8.64;14,129.58,620.59,374.42,8.82;14,129.58,631.55,100.17,8.82" xml:id="b65">
	<monogr>
		<title level="m" type="main">Teaching language models to support answers with verified quotes</title>
		<author>
			<persName coords=""><forename type="first">Jacob</forename><surname>Menick</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Maja</forename><surname>Trebacz</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Vladimir</forename><surname>Mikulik</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">John</forename><surname>Aslanides</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Francis</forename><surname>Song</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Martin</forename><surname>Chadwick</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Mia</forename><surname>Glaese</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Susannah</forename><surname>Young</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Lucy</forename><surname>Campbell-Gillingham</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Geoffrey</forename><surname>Irving</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2203.11147</idno>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="14,129.58,650.16,374.42,8.64;14,129.58,661.11,374.42,8.64;14,129.58,671.89,374.42,8.82;14,129.58,682.85,262.63,8.82" xml:id="b66">
	<analytic>
		<title level="a" type="main">Improving language models by retrieving from trillions of tokens</title>
		<author>
			<persName coords=""><forename type="first">Sebastian</forename><surname>Borgeaud</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Arthur</forename><surname>Mensch</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jordan</forename><surname>Hoffmann</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Trevor</forename><surname>Cai</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Eliza</forename><surname>Rutherford</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Katie</forename><surname>Millican</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">George</forename><forename type="middle">Bm</forename><surname>Van Den Driessche</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jean-Baptiste</forename><surname>Lespiau</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Bogdan</forename><surname>Damoc</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Aidan</forename><surname>Clark</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="m">International conference on machine learning</title>
		<imprint>
			<publisher>PMLR</publisher>
			<date type="published" when="2022">2022</date>
			<biblScope unit="page" from="2206" to="2240"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="14,129.58,701.46,374.42,8.64;14,129.58,712.42,374.42,8.64;14,129.58,723.20,235.10,8.82" xml:id="b67">
	<monogr>
		<title level="m" type="main">Improving retrieval-augmented large language models via data importance learning</title>
		<author>
			<persName coords=""><forename type="first">Xiaozhong</forename><surname>Lyu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Stefan</forename><surname>Grafberger</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Samantha</forename><surname>Biegel</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Shaopeng</forename><surname>Wei</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Meng</forename><surname>Cao</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sebastian</forename><surname>Schelter</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ce</forename><surname>Zhang</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2307.03027</idno>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="15,129.58,85.34,374.42,8.64;15,129.58,96.30,374.42,8.64;15,129.58,107.08,270.95,8.82" xml:id="b68">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Arvind</forename><surname>Neelakantan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tao</forename><surname>Xu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Raul</forename><surname>Puri</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Alec</forename><surname>Radford</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jesse</forename><surname>Michael Han</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jerry</forename><surname>Tworek</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Qiming</forename><surname>Yuan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nikolas</forename><surname>Tezak</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jong</forename><forename type="middle">Wook</forename><surname>Kim</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Chris</forename><surname>Hallacy</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2201.10005</idno>
		<title level="m">Text and code embeddings by contrastive pre-training</title>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="15,129.58,126.19,374.42,8.64;15,129.58,136.97,213.22,8.82" xml:id="b69">
	<analytic>
		<title level="a" type="main">Billion-scale similarity search with GPUs</title>
		<author>
			<persName coords=""><forename type="first">Jeff</forename><surname>Johnson</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Matthijs</forename><surname>Douze</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hervé</forename><surname>Jégou</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">IEEE Transactions on Big Data</title>
		<imprint>
			<biblScope unit="volume">7</biblScope>
			<biblScope unit="issue">3</biblScope>
			<biblScope unit="page" from="535" to="547"/>
			<date type="published" when="2019">2019</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,156.07,374.42,8.64;15,129.58,166.85,374.42,8.82;15,129.58,177.81,372.54,8.82" xml:id="b70">
	<analytic>
		<title level="a" type="main">The use of mmr, diversity-based reranking for reordering documents and producing summaries</title>
		<author>
			<persName coords=""><forename type="first">Jaime</forename><surname>Carbonell</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jade</forename><surname>Goldstein</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="m">Proceedings of the 21st annual international ACM SI-GIR conference on Research and development in information retrieval</title>
		<meeting>the 21st annual international ACM SI-GIR conference on Research and development in information retrieval</meeting>
		<imprint>
			<date type="published" when="1998">1998</date>
			<biblScope unit="page" from="335" to="336"/>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,196.92,374.42,8.64;15,129.58,207.88,135.74,8.64" xml:id="b71">
	<monogr>
		<title/>
		<author>
			<persName coords=""><forename type="first">Harrison</forename><surname>Chase</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Langchain</surname></persName>
		</author>
		<ptr target="https://github.com/hwchase17/langchain"/>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,226.81,374.42,8.64;15,129.58,237.77,374.42,8.64;15,129.58,248.55,224.99,8.82" xml:id="b72">
	<monogr>
		<title level="m" type="main">What disease does this patient have? a large-scale open domain question answering dataset from medical exams</title>
		<author>
			<persName coords=""><forename type="first">Di</forename><surname>Jin</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Eileen</forename><surname>Pan</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nassim</forename><surname>Oufattole</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Wei-Hung</forename><surname>Weng</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hanyi</forename><surname>Fang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Peter</forename><surname>Szolovits</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2009.13081</idno>
		<imprint>
			<date type="published" when="2020">2020</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="15,129.58,267.66,374.42,8.64;15,129.58,278.61,374.42,8.64;15,129.58,289.57,374.42,8.64;15,129.58,300.35,308.54,8.82" xml:id="b73">
	<analytic>
		<title level="a" type="main">An overview of the bioasq large-scale biomedical semantic indexing and question answering competition</title>
		<author>
			<persName coords=""><forename type="first">George</forename><surname>Tsatsaronis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Georgios</forename><surname>Balikas</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Prodromos</forename><surname>Malakasiotis</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Ioannis</forename><surname>Partalas</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Matthias</forename><surname>Zschunke</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dirk</forename><surname>Michael R Alvers</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Anastasia</forename><surname>Weissenborn</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sergios</forename><surname>Krithara</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Dimitris</forename><surname>Petridis</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Polychronopoulos</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">BMC bioinformatics</title>
		<imprint>
			<biblScope unit="volume">16</biblScope>
			<biblScope unit="issue">1</biblScope>
			<biblScope unit="page" from="1" to="28"/>
			<date type="published" when="2015">2015</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,319.46,374.42,8.64;15,129.58,330.42,374.42,8.64;15,129.58,341.38,102.92,8.64" xml:id="b74">
	<monogr>
		<title level="m" type="main">Rlprompt: Optimizing discrete text prompts with reinforcement learning</title>
		<author>
			<persName coords=""><forename type="first">Mingkai</forename><surname>Deng</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Jianyu</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Cheng-Ping</forename><surname>Hsieh</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yihan</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Han</forename><surname>Guo</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Tianmin</forename><surname>Shu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Meng</forename><surname>Song</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Eric</forename><forename type="middle">P</forename><surname>Xing</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Zhiting</forename><surname>Hu</surname></persName>
		</author>
		<imprint>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,360.31,374.42,8.64;15,129.58,371.09,340.89,8.82" xml:id="b75">
	<monogr>
		<author>
			<persName coords=""><forename type="first">Chengrun</forename><surname>Yang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xuezhi</forename><surname>Wang</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Yifeng</forename><surname>Lu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Hanxiao</forename><surname>Liu</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">V</forename><surname>Quoc</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Denny</forename><surname>Le</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Xinyun</forename><surname>Zhou</surname></persName>
		</author>
		<author>
			<persName coords=""><surname>Chen</surname></persName>
		</author>
		<idno type="arXiv">arXiv:2309.03409</idno>
		<title level="m">Large language models as optimizers</title>
		<imprint>
			<date type="published" when="2023">2023</date>
		</imprint>
	</monogr>
	<note type="report_type">arXiv preprint</note>
</biblStruct>

<biblStruct coords="15,129.58,390.20,374.43,8.64;15,129.58,400.98,238.72,8.82" xml:id="b76">
	<analytic>
		<title level="a" type="main">A teachable moment for dual-use</title>
		<author>
			<persName coords=""><forename type="first">Fabio</forename><surname>Urbina</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Filippa</forename><surname>Lentzos</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Cédric</forename><surname>Invernizzi</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Sean</forename><surname>Ekins</surname></persName>
		</author>
	</analytic>
	<monogr>
		<title level="j">Nature machine intelligence</title>
		<imprint>
			<biblScope unit="volume">4</biblScope>
			<biblScope unit="issue">7</biblScope>
			<biblScope unit="page" from="607" to="607"/>
			<date type="published" when="2022">2022</date>
		</imprint>
	</monogr>
</biblStruct>

<biblStruct coords="15,129.58,420.08,374.42,8.64;15,129.58,431.04,374.42,8.64;15,129.58,441.82,374.42,8.82;15,129.58,452.96,206.10,8.64" xml:id="b77">
	<analytic>
		<title level="a" type="main">CORE: A global aggregation service for open access papers</title>
		<author>
			<persName coords=""><forename type="first">Petr</forename><surname>Knoth</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Drahomira</forename><surname>Herrmannova</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Matteo</forename><surname>Cancellieri</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Lucas</forename><surname>Anastasiou</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Nancy</forename><surname>Pontika</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Samuel</forename><surname>Pearce</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">Bikash</forename><surname>Gyawali</surname></persName>
		</author>
		<author>
			<persName coords=""><forename type="first">David</forename><surname>Pride</surname></persName>
		</author>
		<idno type="DOI">10.1038/s41597-023-02208-w</idno>
		<ptr target="https://doi.org/10.1038/s41597-023-02208-w"/>
	</analytic>
	<monogr>
		<title level="j">Scientific Data</title>
		<imprint>
			<biblScope unit="volume">10</biblScope>
			<biblScope unit="issue">1</biblScope>
			<date type="published" when="2023-06">June 2023</date>
		</imprint>
	</monogr>
</biblStruct>

				</listBibl>
			</div>
		</back>
	</text>
</TEI>