File size: 13,603 Bytes
118e0d5
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
 
cb6f6ef
 
 
 
 
 
118e0d5
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6f6ef
 
 
118e0d5
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6f6ef
118e0d5
 
cb6f6ef
 
 
 
 
 
 
 
118e0d5
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
 
 
 
cb6f6ef
118e0d5
cb6f6ef
118e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6f6ef
 
 
 
 
118e0d5
 
 
 
 
 
 
 
 
cb6f6ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118e0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
 
 
 
 
 
 
 
cb6f6ef
118e0d5
 
 
 
cb6f6ef
118e0d5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import timm\n",
    "from fastai.vision.all import *\n",
    "import gradio as gr\n",
    "import os\n",
    "\n",
    "\n",
    "import platform\n",
    "if platform.system() == 'Windows':\n",
    "    import pathlib\n",
    "    temp = pathlib.PosixPath\n",
    "    pathlib.PosixPath = pathlib.WindowsPath"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "themes = sorted(('City', 'Technic', 'Star-Wars', 'Creator', 'Ninjago', 'Architecture', 'Duplo', 'Friends', 'DC-Comics-Super-Heroes'))\n",
    "learn_color = load_learner('models/lego_convnext_small_4ep_sets05-19.pkl')\n",
    "learn_gray = load_learner('models/lego_convnext_small_4ep_grayscale.pkl')\n",
    "\n",
    "def classify(img, *args):\n",
    "    if args[-1] == 'Color mode':\n",
    "        _, _, probs = learn_color.predict(img)\n",
    "    else:\n",
    "        _, _, probs = learn_gray.predict(img)\n",
    "    return dict(zip(themes, map(float, probs)))\n",
    "\n",
    "\n",
    "img = gr.components.Image(shape=(192, 192), label=\"Input image\")\n",
    "is_color = gr.components.Radio(['Color mode', 'Grayscale mode'], value='Color mode', show_label=False)\n",
    "real_label = gr.components.Textbox(\"\", label='Theme', interactive=False)\n",
    "year = gr.components.Textbox(\"\", label='Release year', visible=False)\n",
    "\n",
    "label = gr.components.Label(label='Predictions')\n",
    "examples = [[f'test_images/{img_name}', img_name.split('2', 1)[0].capitalize(), img_name.split('.', 1)[0][-4:]] for img_name in os.listdir('test_images')]\n",
    "\n",
    "# gr.Interface(fn=classify, inputs=[img, real_label, year, is_color], outputs=label, examples=examples).launch(\n",
    "#     # inline=False\n",
    "#     )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "title = 'LEGO sets&creations theme classifier'\n",
    "description = f'''\n",
    "# {title}\n",
    "This demo showcases the LEGO theme classifier built with the help of fast.ai. A model was trained using over 1800 images of sets released in 2005-19 scraped from the Brickset LEGO database.\n",
    "To test how much overfitting might be present due to the model memorizing the color(s) associated with a particular theme, I ran the training again using the same set of images, but in grayscale. Hence two available models.\n",
    "\n",
    "I was especially intrested in how the model will do on MOCS a.k.a. community creations, since the boundries between themes are not well-defined. Enjoy!\n",
    "'''"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\gradio\\deprecation.py:43: UserWarning: You have unused kwarg parameters in Row, please remove them: {'equal_height': True}\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7860\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "<style>\n",
       "    /* Turns off some styling */\n",
       "    progress {\n",
       "        /* gets rid of default border in Firefox and Opera. */\n",
       "        border: none;\n",
       "        /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
       "        background-size: auto;\n",
       "    }\n",
       "    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
       "        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
       "    }\n",
       "    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
       "        background: #F44336;\n",
       "    }\n",
       "</style>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      0.00% [0/1 00:00&lt;?]\n",
       "    </div>\n",
       "    "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\gradio\\routes.py\", line 321, in run_predict\n",
      "    output = await app.blocks.process_api(\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\gradio\\blocks.py\", line 1015, in process_api\n",
      "    result = await self.call_function(fn_index, inputs, iterator, request)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\gradio\\blocks.py\", line 856, in call_function\n",
      "    prediction = await anyio.to_thread.run_sync(\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\anyio\\to_thread.py\", line 31, in run_sync\n",
      "    return await get_asynclib().run_sync_in_worker_thread(\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 867, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"C:\\Users\\ewafa\\AppData\\Local\\Temp\\ipykernel_20024\\986269756.py\", line 9, in classify\n",
      "    _, _, probs = learn_color.predict(img)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 313, in predict\n",
      "    inp,preds,_,dec_preds = self.get_preds(dl=dl, with_input=True, with_decoded=True)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 300, in get_preds\n",
      "    self._do_epoch_validate(dl=dl)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 236, in _do_epoch_validate\n",
      "    with torch.no_grad(): self._with_events(self.all_batches, 'validate', CancelValidException)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 193, in _with_events\n",
      "    try: self(f'before_{event_type}');  f()\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 199, in all_batches\n",
      "    for o in enumerate(self.dl): self.one_batch(*o)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 227, in one_batch\n",
      "    self._with_events(self._do_one_batch, 'batch', CancelBatchException)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 193, in _with_events\n",
      "    try: self(f'before_{event_type}');  f()\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\learner.py\", line 205, in _do_one_batch\n",
      "    self.pred = self.model(*self.xb)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
      "    return forward_call(*input, **kwargs)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\container.py\", line 204, in forward\n",
      "    input = module(input)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
      "    return forward_call(*input, **kwargs)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\fastai\\vision\\learner.py\", line 177, in forward\n",
      "    def forward(self,x): return self.model.forward_features(x) if self.needs_pool else self.model(x)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\timm\\models\\convnext.py\", line 397, in forward_features\n",
      "    x = self.stem(x)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
      "    return forward_call(*input, **kwargs)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\container.py\", line 204, in forward\n",
      "    input = module(input)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1194, in _call_impl\n",
      "    return forward_call(*input, **kwargs)\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\timm\\models\\layers\\norm.py\", line 67, in forward\n",
      "    if self._fast_norm:\n",
      "  File \"c:\\Users\\ewafa\\anaconda3\\envs\\ml\\lib\\site-packages\\torch\\nn\\modules\\module.py\", line 1269, in __getattr__\n",
      "    raise AttributeError(\"'{}' object has no attribute '{}'\".format(\n",
      "AttributeError: 'LayerNorm2d' object has no attribute '_fast_norm'\n"
     ]
    }
   ],
   "source": [
    "themes = sorted(('City', 'Technic', 'Star-Wars', 'Creator', 'Ninjago', 'Architecture', 'Duplo', 'Friends', 'DC-Comics-Super-Heroes'))\n",
    "learn_color = load_learner('models/lego_convnext_small_4ep_sets05-19.pkl')\n",
    "learn_gray = load_learner('models/lego_convnext_small_4ep_grayscale.pkl')\n",
    "\n",
    "def classify(img, is_color):\n",
    "    if is_color == 'Grayscale model':\n",
    "        _, _, probs = learn_gray.predict(img)\n",
    "    else:\n",
    "        _, _, probs = learn_color.predict(img)\n",
    "    return dict(zip(themes, map(float, probs)))\n",
    "\n",
    "\n",
    "examples_sets = [[f'images/sets/{img_name}', img_name.split('2', 1)[0].capitalize(), img_name.split('.', 1)[0][-4:]] for img_name in os.listdir('images/sets')]\n",
    "examples_mocs = [['images/mocs/modernlibrary.jpg', 'Modern library MOC'],\n",
    "                 ['images/mocs/keanu.jpg', 'Keanu Reeves himself'],\n",
    "                 ['images/mocs/solaris.jfif', 'Solaris Urbino articulated bus'],\n",
    "                 ['images/mocs/aroundtheworld.jpg', '\"Around the World\" MOC'],\n",
    "                 ['images/mocs/walkingminicooper.jpg', 'Walking mini cooper. Yes, walking mini cooper']]\n",
    "\n",
    "with gr.Blocks() as app:\n",
    "    gr.Markdown(description)\n",
    "    with gr.Row(equal_height=True):\n",
    "        with gr.Column():\n",
    "            img = gr.components.Image(shape=(192, 192), label=\"Input image\")\n",
    "            is_color = gr.components.Radio(['Color model', 'Grayscale model'], value='Color model', show_label=False)\n",
    "            real_label = gr.components.Textbox(\"\", label='Real theme', interactive=False)\n",
    "            run_btn = gr.Button(\"Predict!\")\n",
    "            # placeholders for additional info\n",
    "            name = gr.components.Textbox(\"\", label='Name', visible=False)\n",
    "            year = gr.components.Textbox(\"\", label='Release year', visible=False)\n",
    "        with gr.Column():\n",
    "            prediction = gr.components.Label(label='Prediction')\n",
    "    with gr.Row():\n",
    "        with gr.Column():\n",
    "            ex_sets = gr.Examples(examples_sets, inputs=[img, real_label, year], outputs=prediction, label='Examples - official sets')\n",
    "        with gr.Column():\n",
    "            ex_mocs = gr.Examples(examples_mocs, inputs=[img, name], outputs=prediction, label='Examples - community creations')\n",
    "\n",
    "    run_btn.click(fn=classify, inputs=[img, is_color], outputs=prediction)\n",
    "\n",
    "app.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "ml",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8 | packaged by conda-forge | (main, Nov 24 2022, 14:07:00) [MSC v.1916 64 bit (AMD64)]"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "661d60981a8180246504a9562268f79cf2915497a26a99308f4a10e22604b72f"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}